LIFELINES REFERENCE GUIDE

LifeLines Version 3.0.2
Thomas T. Wetmore IV

2 Barton Street

Newburyport, MA 01950 USA
29 April 1995
ttw@beltway.att.com

INTRODUCTION

LifeLines is a genealogy program that runs on UNIX systems. It maintains genealogical records (persons,
families, sources, events and others) in a database, and generates reports from those records. There are
no practical limits on the number of records that can be stored in a LifeLines database, nor on the
amounts or kinds of data that can be kept in the records. LifeLines does not contain built-in reports.
Instead it provides a programming subsystem that you use to program your own reports and charts. The
programming subsystem also lets you query your databases and process your data in any way. LifeLines
uses the terminal independent features of UNIX to provide a screen and menu based user interface.

LifeLines is a non-commercial, experimental system that is use at your own risk software. I developed
LifeLines for personal use and shared it with friends. Enough of a demand arose through word of mouth
and internet, that I have made the LifeLines source code and other information freely available at two
ftp sites, ftp.cac.psu.edu and hoth.stsci.edu. Though LifeLines is free in all its forms, I retain all
rights.

INSTALLATION

You may be installing LifeLines from a source distribution package or as an executable program already
prepared for your UNIX system. The source distribution comes with the readme, build script and make
files necessary to build LifeLines. Follow the instructions in the readme file. The executable program
will be named lines302; I recommend changing it to lines. Lines is the LifeLines program; put it in a
directory in your execution path. If you get the program in executable form, follow whatever
instructions came with it.

The source distribution package also contains documentation and some LifeLines programs.

STARTING LIFELINES AND CREATING DATABASES

You normally start LifeLines with the command:

lines database

where database is the name of a LifeLines database. If LifeLines finds the database, LifeLines opens
the database and takes you to the program's main menu. If the database doesn’t exist, LifeLines asks
whether it should create it, and if you answer yes, does so. You may create any number of databases, but
only one can be accessed by LifeLines at a time. If you built the LifeLines executable from the source
package, the executable may be named lines302 rather than lines. You may either change its name or
invoke LifeLines by using the command lines302 instead.

The full command line interface to LifeLines is:

lines [-rwfkam] [database]

LifeLines Reference Manual — 2

The options mean the following:

-r | open database with read only access

-w | open database with writeable access

-f force open the database — use only in emergency
-a | log dynamic memory operation (for debugging)

The -r option opens the database with read only access. When in this mode LifeLines will not let you
modify the database; no other operations are affected. The -w option opens the database with
writeable access. If the database cannot be opened with the requested mode LifeLines quits
immediately. When you open a database with neither the -r or -w options, LifeLines first tries to
open the database with writeable access; if not possible LifeLines then tries to open the database with
read-only access; and if this is not possible LifeLines quits. A LifeLines database may be open
simultaneously by any number of programs with read-only access; however, if a database is open by a
program with writeable access, then it cannot be opened by any other other program.

In rare situations the read /write mode mechanism can fail; when this happens a database may appear
unopenable. If this happens use the -f option to force open the database; this will open the database
and reset the mode mechanism. This is a dangerous feature; you can use it to open the same database
with writeable access more than once; the results are unpredictable and generally disasterous.

If you don’t give the name of a database on the command line, LifeLines will prompt you for it. If you do
not use the LLDATABASES shell variable (described later), the name you enter must be the name of a
LifeLines database directory expressed using normal UNIX absolute or relative path naming. If you do
use the LLDATABASES variable, LifeLines will search for the database in the directories named in
the variable; this can be very convenient.

INTRODUCTION TO GEDCOM

LifeLines records are stored in GEDCOM format; you organize, edit and maintain your data in this
format. GEDCOM is a standard that defines a file format for moving genealogical data between
computer systems. LifeLines has adopted this format for structuring the records in its databases. This
approach provides a structured yet flexible method for storing all the data you wish to record. There
are few restrictions on the format, amount or type of information you may store in a LifeLines database.

GEDCOM is defined at two levels. At the syntactic level GEDCOM is a simple set of rules for
organizing and structuring data into records, with no concern about the types of records, types or formats
of information in the records, or the relationships between records. At the semantic level GEDCOM
adds an additional set of rules that specify what record types are allowed, how records must be
structured, how data within the records must be identified and formatted, and what specific
relationships between the record types are allowed. In principle there can be multiple semantic
versions of GEDCOM, though in practice there is only one, lineage-linked GEDCOM. Unfortunately
this semantic version of GEDCOM is poorly defined, and every genealogical system has interpreted it
in different ways.

LifeLines uses GEDCOM primarily at the syntactic level, though it does impose a few of the generally
accepted lineage-linked semantic restrictions. This means some important things. It means that you can
store all your genealogical data in your LifeLines database, and that you have wide freedom in how
you choose your own conventions for structuring and formatting your data. But it also means that the
way you store data in your databases can be different from the way that someone else stores their data.
This can be a problem if you share data with others or share report programs with other LifeLines
users. My recommendation is to use GEDCOM lineage-linking conventions wherever possible.

LifeLines does not use forms or screens to guide you through entering or changing data. Instead you use a
screen editor and directly edit the data records. This requires you to understand the GEDCOM format,
and be able to edit data in GEDCOM format, before you can use LifeLines. The GEDCOM format is quite
simple; this introduction will provide all you need to know about GEDCOM in order to use LifeLines.

LifeLines Reference Manual — 3

Here is an example GEDCOM person record:

@I25@ INDI
NAME Thomas Trask /Wetmore/ Sr
SEX M
BIRT
2 DATE 13 March 1866
2 PLAC St. Mary's Bay, Digby, Nova Scotia
2 SOUR Social Security application
1 NATU
2 NAME Thomas T. Wetmore
2 DATE 26 October 1888
2 PLAC Norwich, New London, Connecticut
2 AGE 22 years
2 COUR New London County Court of Common Pleas
2 SOUR court record from National Archives
1 OCCU Antiques Dealer
1 DEAT
2 NAME Thomas Trask Wetmore
2 DATE 17 February 1947
2 PLAC New London, New London, Connecticut
2 AGE 80 years, 11 months, 4 days
2 CAUS Heart Attack
2 SOUR New London Death Records
1 FAMC @F1l1@
1 FAMS @F6@
1 FAMS @Fl12@

=)

A GEDCOM record is made up of lines. Each line has a level number and a tag, and most lines have
a value following the tag. The first line in every record has a cross-reference index between the level
number and the tag.

Level numbers allow data to be structured to any degree of detail; lines with higher level numbers
expand on lines with lower numbers. Each record begins at level 0, and each deeper level increments the
level by one. LifeLines does not restrict the structuring depth. Tags are uppercase (by convention) code
words that specify the kind of information on the line or on the higher numbered lines that follow. The
information after the tag, if any, is the value of the line.

The first line in a record indicates its type. There are four fixed record types in LifeLines databases:
person, family, source and event. The first, 0 level line in these records have tags INDI, FAM, SOUR
and EVEN, respectively. Besides these record types, you may create your own record types by using any
other tag on the 0 level line of a record. The lines that begin records are the only level 0 lines used in
LifeLines. Each level 0 line has a cross-reference index between the level number and the tag. This
index is the record’s internal reference key; other records may refer to this record by using this index.
Cross-reference indexes are bracketed by @ characters.

The first line in the example record has the INDI tag, identifying it as a person. The cross-reference
index value, 125, can be used by other records to refer to this record.

The second line in the example has the person's name. Each person record in a LifeLines database must
have at least one I NAME line, and its value must be in GEDCOM name format. This format allows
names to be as long as needed, but the surname, which may be placed anywhere in the name, must be
separated from the rest of the name by one or two slashes. For example:

1 NAME John/Smith
1 NAME John /Smith/
1 NAME John/Smith/Jr.

LifeLines Reference Manual — 4

The second slash is required only if name elements follow the surname. White space is optional before
the first slash and after the second. If you don't know a person's surname, or the person doesn’t have a
surname, you may use / or // or no slashes at all. For example:

1 NAME Mary//
1 NAME Mary/
1 NAME Mary

are all ways to enter a person named Mary with no known surname. A person may have any number,
including zero, given names and/or initials. A LifeLines person record may have any number of 1
NAME lines, though the person will be displayed with the first name value only. Persons are indexed
under all their names, however, so you will be able to search for persons by any of their names.

The next line in the example gives the person's sex. LifeLines doesn't require a 1 SEX line, but you
should include it. The value of the line should be M or F if the sex is known; it can be left blank or set
to U or ?, say, if not known. A person must have a 1 SEX line with a value of either M or F before he
or she can be made a spouse or parent in a family.

The example record also contains three events: birth, naturalization, and death. An event begins with
a level 1 line whose tag indicates the event type. For example, BIRT is the tag for a birth event.

Events usually have at least a 2 DATE and a 2 PLAC line and often a 2 SOUR line. The DATE and
PLAC lines give the date and place of the event. The value of a LifeLines DATE line is free format,
though LifeLines will try to parse it for specific day, month and year information. The value of a
PLAC line is usually a comma-separated list of geopolitical units, starting with the most specific,
ending with the most general. The SOUR line indicates the source of information about the event. The
SOUR line can be the root of a full description of the source, or the value of the SOUR line can be a
cross-reference key that refers to the source record that describes the source.

The naturalization event (with tag NATU) shows a few other lines. The 2 NAME line gives the
person's name as recorded in the source (only I NAME lines must follow GEDCOM format). The 2 AGE
line gives the person's age at the time of the event. The 2 COUR line indicates the court where
naturalization occurred.

The final event is a death event (tag DEAT). The 2 CAUS line gives the cause of death.

At the end of the record are three lines that refer to family records. A I FAMC line refers to a family
record that the person belongs to as a child; its value is the cross-reference index value of that family.
A 1 FAMS line refers to a family record that the person belongs to as a spouse or parent.

When using LifeLines to edit a person, you will not be able to edit the cross reference values on the 0
INDI, 1 FAMC or 1 FAMS lines; these are maintained by LifeLines.

Here is an example family record:

0 @F6@ FAM

1 HUSB @I25@

1 WIFE @I26@

1 MARR
2 DATE 31 March 1891
2 PLAC New London, New London, Connecticut
2 SOUR New London Vital Records

1 CHIL @I27@

1 CHIL @I17@

The 0 FAM line assigns the family the cross-reference index of F6. The record contains 1 HUSB and 1
WIFE lines that refer to the two spouses/parents. The record also holds a marriage event (tag MARR)
and two 1 CHIL lines that refer to two children in the family. When editing family records, you
cannot edit the 0 FAM, 1 HUSB, 1 WIFE, or 1 CHIL lines; these are maintained by LifeLines.

When you create new records for your database, you are free to invent tags and structure your data in any

LifeLines Reference Manual —5

way you see fit. However, it is good practice to use standard GEDCOM tags and value formats.
LifeLines does enforce a small set of conventions that you must obey. Within person records, LifeLines
requires that you use I NAME and 1 SEX lines with their special meanings and value formats. Though
not required, LifeLines assumes that you will use 1 BIRT, 1 DEAT, 1 CHR, and 1 BURI lines for birth,
death, baptism and burial events, respectively. In family records, LifeLines assumes you will use the 1
MARR event for marriage events. Within person records, you are not allowed to use 0 INDI, 1 FAMC
or 1 FAMS lines, since these are used to maintain linkage information. Within family records, you are
not allowed to use 0 FAM, 1 HUSB, 1 WIFE or 1 CHIL lines.

The indentation shown in the examples is not part of GEDCOM format. When LifeLines prepares
records for you to edit, however, it always indents the records, making them easier to read and
understand. You do not need to follow this indentation scheme when you edit the records. Indentation is
removed from the data before it is stored in the database.

MAIN MENU

After LifeLines opens an existing database, or creates a new one, it presents you with the main menu:

Please choose an operation:

b Browse the persons in the database
Add information to the database
Delete information from the database
Generate reports from the database
Modify character translation tables
Miscellaneous utilities
Handle source, event and other records
Quit and return to UNIX

QX & " Qo

Select an operation by striking the proper selection letter.

The browse operation lets you browse the database and perform many operations on the data. The add
operation lets you add new information, and the delete operation removes information. The generate
reports operation reads report programs and generates output reports. The modify character
translation tables operation changes the translation tables. The miscellaneous utilities operation
provides such things as backup and restore. The handle source, event and other records operation gives
you access to these three record types. The quit operation closes the database and returns to UNIX.

The browse operation deserves special mention, because it provides a rich environment for searching,
viewing, adding, modifying, merging and deleting information in the database. You will find that you
operate from the browsing modes most of the time. The operations are all described in later sections.

LifeLines Reference Manual — 6

ENTERING THE FIRST PERSON

Normally you add persons to the database from the browsing modes, but when entering the first person
there is no one in the database to browse to. To add the first person to a LifeLines database, first select
the add operation from the main menu. You will be prompted with the add menu (described later).
Strike p to add a person. LifeLines creates a template of a GEDCOM person record, and puts you in a
screen editor to edit the template. The default template is:

INDI
NAME Fname /Surname/
SEX MF
BIRT

2 DATE
2 PLAC
2 SOUR
1 DEAT

2 DATE
2 PLAC
2 SOUR

=R = o

Edit the template to create the new person's record. Change the name to the person's name. Assign the
person's sex by deleting either M or F. Fill out the birth and death events as best you can. If the person
is alive, remove the death event. Remove any DATE and PLAC lines you do not have the information
for.

The default template provides lines for one birth and one death event. You can expand the record with
other events (even more birth or death events) and lines. Indentation makes it easier to read and edit
the record, but isn't necessary. You may change the default edit template by defining the user option
INDIREC (described later).

Here is how I might edit the template when creating a record about myself:

INDI
NAME Thomas Trask /Wetmore/ IV
SEX M
BIRT
2 DATE 18 December 1949
2 PLAC New London, New London, Connecticut
2 SOUR Birth Certificate
1 OCCU Software Engineer
1 RESI
2 DATE 1982 to 1995
2 PLAC Newburyport, Essex, Massachusetts
2 ADDR 2 Barton Street, Newburyport, MA 01950
... lots of other events and facts

=R = o

When you edit a person record, don't add or modify INDI, FAMC or FAMS lines. LifeLines creates
and maintains these lines through specific user commands.

When you finish editing and leave the editor, you automatically return to LifeLines. If you made an
error (eg, didn't use proper level numbers or didn't follow the proper name convention), LifeLines
displays an error message, and asks if you want to re-edit the record. If you don't, LifeLines doesn't add
the person to the database.

When the record is in proper format, LifeLines asks if you are sure you want to add the person to the
database. If you answer yes, the person is added; if you answer no, the person isn't. In both cases
LifeLines returns to the main menu.

LifeLines Reference Manual —7

SCREEN EDITORS AND ENVIRONMENT VARIABLES

With LifeLines you maintain the database records using a screen editor. This is different than other
genealogical programs where screens or forms are used to gather the data.The default screen editor for
LifeLines is vi. This can be overridden by the ED, EDITOR or LLEDITOR environment variables. For
example, if you prefer the emacs screen editor, you may add the line:

to your login profile file, and LifeLines will use emacs for editing.

There are four other, LifeLines specific environment variables. They are LLDATABASES,
LLARCHIVES, LLPROGRAMS and LLREPORTS. LLDATABASES and LLPROGRAMS are UNIX
path list variables.

LLDATABASES can be set to a list of directories that hold LifeLines databases. When you execute the
LifeLines programs these directories will be searched in turn for the database mentioned on the
command line. For example,

‘ LILDATABASES=. : /usr/ttw4/Lifel.ines/Databases

indicates that databases should be searched for in the current directory first, and if not found there,
then searched for in:

‘ /usr/ttwé/Lifelines/Databases

Each LifeLines database is implemented as a directory with specific contents. The LLDATABASES
variable should be set to a list of directories that contain these database directories, not to a list of
database directories themselves.

The environment variable LLPROGRAMS is used in the same way, but to specify the search path for
LifeLines report generating and other programs (described later).

LLARCHIVES and LLREPORTS can each be set to specify a single directory. LLARCHIVES is used to
select a directory where all database backup files will be stored, and LLREPORTS is used to select a
directory where all generated reports and program outputs will be placed.

You are not required to use these environment variables; when a variable is not defined, LifeLines uses
the current directory as its default value. If you do use the variables, you can override their use by
specifying files and directories as either absolute or relative paths.

LifeLines uses the curses library for terminal independent I/O. This requires you to specify your
terminal type with the TERM environment variable.

BASICS OF BROWSING

You will use the browsing modes of LifeLines most of the time. When in these modes you can quickly
search for or browse through the persons and families in the database. When you find a person or
family you are interested in, you can then edit their records.

The browsing modes also allow you to add new persons and families to the database, add spouses to
families, add children to families, swap the order of spouses and children, merge persons and merge
families, and perform other operations. The browsing modes also lets you remove spouses from families
and remove children from families.

There are six browsing modes. The person and family modes concentrate on a single person and family,
respectively. The list mode allows you to browse through a list of persons. The pedigree mode shows a
four generation pedigree, the person tandem mode shows two persons at once, and the family tandem
mode shows two families at once.

LifeLines Reference Manual — 8

IDENTIFYING A PERSON OR LIST OF PERSONS TO BROWSE

To enter the browsing modes from the main menu strike b. LifeLines asks you to identify a person or list
of persons to browse to:

Please identify person or persons to browse to.
Enter name, key, refn or list:

Enter either a name or partial name, or an internal key value, or a user-defined reference key (described
later) or the name of a previously defined list of persons (described later), and strike return.

LifeLines allows wide flexibility in how to enter names. You may enter a name in upper or lower case or
any combination. You may leave out all but the first given name, and, for given names, you may leave
out any letters except the first. You may leave vowels out of the surname, and after four or five
consonants have been typed, you may leave them out too. You must separate the given names from the
surname by a slash, and if you enter given names after the surname (as in Chinese names), or any
modifiers (such as Jr, Sr, IV, etc.), they must be separated from the surname by another slash. Here are
a few of the ways I can enter my name:

Thomas Trask /Wetmore/ IV
thomas/wetmore/iv

t t/wetmr/i

th tr/Wetmore

t/wtmr/iv

You may browse to the list of all persons with the same surname by using the * character as the first
initial. For example:

* /wetmore

matches all persons with surname Wetmore. This is the only wildcard feature supported by LifeLines.

After you enter a name, LifeLines searches for all persons who match. There are three possibilities: no
one matches; one person matches; or more than one person matches. In the first case LifeLines writes:

There is no one in the database with that name.

and leaves you in the main menu.

If one person matches, LifeLines enters the person browse mode displaying the matched person. If more
than one person matches, LifeLines enters the list browsing mode with the list of matching persons.

You may also identify a person by entering his or her internal, cross-reference key value. The internal
key values of all person records are an I followed by digits. In the current version, when you enter a key
value you must omit the I. If LifeLines finds a person with the key value you provide, LifeLines enters
the person browsing mode displaying that person.

The browse command b is also available from most browsing modes. The command works the same way
from those modes as it does from the main menu.

Z1IP IDENTIFYING A NEW PERSON

Some LifeLines operations need you to identify a person, not for the purpose of browsing, but for the
purpose of completing an operation you have requested. For example, when you add a child to a family,
LifeLines may ask you to identify the child. When this happens a panel pops up that asks you to
identify a person. You respond by typing a name or key exactly as you would for the b command. If no
one matches, LifeLines returns to the previous browsing mode. If the name matches persons in the
database LifeLines displays something like:

LifeLines Reference Manual — 9

Please choose from among these persons.
>Thomas Trask Wetmore, b. 1826, N.B. (42)
Thomas Trask Wetmore IV, b. 1949, Conn. (1)
Thomas Trask Wetmore III, b. 1925, Conn. (6)
Thomas Trask Wetmore Jr, b. 1896, Conn. (11)
Thomas Trask Wetmore Sr, b. 1866, N.S. (23)
Thomas Trask Wetmore V, b. 1982, Mass. (5)

Commands: j Move down k Move up i Select g Quit

Use the j and k commands to move the selection cursor (>) to the correct person, and then use the i
command to select that person. There may be more persons in the list than you can see at once. If this is
so then you can use the j and k commands to scroll through the full list. If you don’t find the proper
person, use the g command and LifeLines asks whether you want to enter another name.

When LifeLines creates a list of names for you to select from, it tries to add extra information to the
name; this helps determine which name to choose, and is important in databases where many persons
have the same name. LifeLines also places the person's key value at the end of each menu line; this
may be helpful in large databases.

Some browse modes provide the z command, which allows you to browse to a new person using the zip
style of identification rather than the b style.

BROWSE DISPLAY BASICS

The screen display for each browsing mode is made up of panels. At the bottom of each display is a
message panel used for one line messages. Each display contains one or two data panels showing
information from the database. And each display has a panel with the operation menu available for
that mode.

LifeLines Reference Manual —10

PERSON BROWSE MODE

After you identify a person to browse to, LifeLines enters the person browse mode. The top panel in the
display gives basic information about the person. The middle panel provides a menu of commands. For
example:

person: Thomas Trask WETMORE Sr (25)

born: 13 March 1866, St. Mary's Bay, Digby, Nova Scotia

died: 17 February 1947, New London, New London, Connecticut

father: Daniel Lorenzo WETMORE, b. 1821, N.S., d. 1903, Conn. (48)

mother: Mary Ann DOTY, b. 1824, N.S., d. 1897, Conn. (59)

spouse: Margaret Ellen KANEEN, b. 1855, Eng., d. 1900, Conn. (26)
child: Portia Louise WETMORE, b. 1892, Conn., d. 1921, Conn. (27)
child: Thomas Trask WETMORE, b. 1896, Conn., d. 1970, Conn. (17)

spouse: Arleen M KEENEY, m. 1914, Conn. (75)

Please choose an operation:
Edit the person
Browse to father
Browse to mother
Browse to spouse/s Add as spouse
Browse to children Add as child
Browse to older sib r Remove as spouse
y Browse to younger sib d Remove as child

Browse to family
Browse to parents
Browse to persons

Show pedigree
Create new person
Create new family
Swap two families
Enter tandem mode
Browse to person
Return to main menu

caw s MO
PO £ Q
Q N X p BT

LifeLines — Person Browse Screen

The commands perform a wide variety of functions.

e

=

Edit the person. Edit the person's database record. LifeLines puts the record in a file, and then runs a
screen editor so you can edit the record. When you return from the editor, LifeLines asks you to
confirm any changes; the person is changed only if you answer yes.

Browse to father.

Browse to mother. Browse to the person’s father or mother. If the parent isn't in the database
LifeLines doesn't change the display. If there are more than one father or mother, LifeLines asks you
to select one.

Browse to spouse/s. Browse to the person’s spouse. If the person has more than one spouse, LifeLines
asks you to select one. If the person has no spouse, the display does not change.

Browse to children. Browse to one of the person’s children. If there is more than one child, LifeLines
asks you to select one. If the person has no children, the display does not change.

Browse to older sib.

Browse to younger sib. Browse to the person’s next older sibling or next younger sibling. If the person
has no such sibling, the display does not change. Only siblings from the same family are browsed by
this command.

Browse to family. Browse to the family the person is a spouse or parent in, and switch to the family
browse mode. If the person is in more than one family, LifeLines asks you to identify which one. If
the person is not a spouse or parent in any family, the display does not change.

Browse to parents. Browse to the family the person is a child in, and switch to the family browse
mode. If the person is not a child in a family, the display does not change. If the person is a child in
more than one family, LifeLines asks you to identify which one.

Browse to persons. Browse to a new person or list of persons. LifeLines asks you to identify a person or

LifeLines Reference Manual — 11

persons by name, key or list name, and depending on how many persons are identified, switches
either to the list browse mode, or remains in the person browse mode.

Add as spouse. Add the person as a spouse/ parent to an existing family. LifeLines asks you to
identify the family, and then asks you to confirm the request.

Add as child. Add the person as a child to an existing family. The person may already be a child in
another family. LifeLines asks you to identify the family, and then asks you to confirm the request.

Remove as spouse. Remove the person as a spouse or parent from an existing family. If the person is a
spouse or parent in more than one family, LifeLines asks you to identify the family.

Remove as child. Remove the person as a child in an existing family.

Show pedigree. Change to pedigree browse mode. The person becomes the root person in the pedigree
display.

Create new person. Create and add a new person to the database. LifeLines creates a record template
and puts you into the screen editor to edit the record. When you return from the editor, LifeLines asks
you to confirm the operation. If you do, the new person is added and becomes the current person. If not,
the new person is not added, and LifeLines returns to the original display.

Create new family. Create and add a new family to the database. The new family may have the
current person as either a spouse/ parent or as a child; LifeLines asks which. If you choose to create a
family with the person as a spouse/ parent, LifeLines asks you to identify the other spouse if he or
she is known. In either case LifeLines creates a family template, and places you in the screen editor.
When you return from the editor, LifeLines asks you to confirm the operation. If you do, LifeLines
adds the family and shifts into family browse mode. If the command you ran just before the a
command were the n command, and you choose to create a family with the person as a

spouse/ parent, LifeLines guesses that the other spouse in the family will be the person displayed
just before the new person was created. LifeLines asks you if this is the case, and if so, automatically
make that person the other spouse in the new family. If this is not the case, LifeLines asks you to
identify the other spouse.

Swap two families. Swap (change chronological order) any two families that the person belongs to
as a spouse or parent. LifeLines asks you to identify the two families and then swaps them.

Enter tandem mode. Change to the tandem person browse mode. LifeLines first asks you to identify
the second person.

Browse to person. Zip browse to a new person. LifeLines asks you to identify a person by name or key
value, and if you do so, browses to that person.

Return to main menu. Return to the LifeLines main menu.

LifeLines Reference Manual —12

LIST BROWSE MODE

This browse mode handles lists of persons. The top panel shows information about one person in the list.
The left panel shows a list of up to 12 persons. The person shown in the top panel is identified by the >
character. The right panel is the menu of available commands.

e

person: Thomas Trask WETMORE Sr (25)
born: 13 March 1866, St. Mary's Bay, Digby, Nova Scotia
died: 17 February 1947, New London, New London, Connecticut
father: Daniel Lorenzo WETMORE, b. 1821, N.S., d. 1903, Conn. (48)
mother: Mary Ann DOTY, b. 1824, N.S., d. 1897, Conn. (59)
spouse: Margaret Ellen KANEEN, b. 1855, Eng., d. 1900, Conn. (26)

Thomas Trask WETMORE (42) Choose an operation:
Thomas Trask WETMORE IIT (6) Move down list
Thomas Trask WETMORE IV (1) Move up list
Thomas Trask WETMORE (11) Edit this person
>Thomas Trask WETMORE Sr (23) Browse this person
Thomas Trask WETMORE (5) Mark this person
Delete from list
Enter tandem mode
Name this list
Browse new persons
Add to this list
Swap mark/current
Return to main menu

QX o OB B8P0 R

LifelLines — List Browse Screen

Move down list.

Move up list. Move down or up the list one person, respectively. The list panel is only large enough to
show 12 persons. However, the list may contain many more persons. Use the j and k commands to
scroll to these other persons.

Edit this person. Edit the displayed person's database record. LifeLines runs the editor on the
person’s record. When you return from the editor, LifeLines asks you to confirm any changes, and then
leaves you in the list browse mode.

Browse this person. Change to the person browse mode with the current person.

Mark this person. Mark the current person if he/she is not marked; unmark the person is he/she is.
The marked person is shown with an x by his/her name. Marked persons are used by the t and x
commands. Only one person may be marked at a time.

Delete from list. Remove the current person from the browse list (not from the database).

Enter tandem mode. Change to the tandem person mode with the current person and the marked
person as the two persons. If no person is marked there is no change.

Name this list. Lists of persons may be named, allowing you to quickly browse back to them by giving
a list name in response to the b command from different modes. LifeLines will prompt you for the
name. List names are most convenient when short.

Browse new persons. Browse to a new person or list of persons. You can identify a person or list of
persons by name, internal or user key or by list name.

Add to this list. Add more persons to the current browse list. LifeLines asks you to identify a new
person or list of persons by name, key or list name, and they are added to and name-sorted into the
current list.

Swap mark/current. Swap the current person with the marked person in the list.

LifeLines Reference Manual —13

q Return to main menu. Return to the LifeLines main menu.

FAMILY BROWSE MODE

This browse mode displays information about a family. The top panel shows basic information about
the family. The bottom panel shows the menu of available commands.

father: Thomas Trask WETIMORE IV (1)
born: 18 December 1949, New London, New London, Connecticut
died:

mother: Luann Frances GRENDA (2)
born: 10 July 1949, Pittsburgh, Allegheny, Pennsylvania
died:

married: 1 August 1970, Governors Island, New York, New York
child: Anna Vivian Wetmore, b. 1974, Alaska (3)
child: Marie Margaret WETMORE, b. 1979, Conn. (4)
child: Thomas Trask WETMORE V, b. 1982, Mass. (5)

Please enter the next family browse operation

e Edit the family s Add spouse to family t Enter family tandem
f Browse to father a Add child to family b Browse to new persons
m Browse to mother r Remove spouse from Z Browse to new person
c Browse to children d Remove child from g Return to main menu
n Create new person X Swap two children

Lifelines — Family Browse Mode

-~

Edit the family. Edit the family's record. LifeLines writes the record to a file and puts you into an
editor to edit the file. When you return from the editor, LifeLines asks you to confirm the update;
the family is changed only if you do so.

Browse to father.

m Browse to mother. Browse to the father/husband or mother/wife of the family, switching to person

browse mode. If the parent is not there, there is no change.

Browse to children. Browse to a child in the family, switching to the person browse mode. If the
family has more than one child, LifeLines asks you to identify a specific child.

Create new person. Create and add a new person to the database. LifeLines creates a record template
and puts you into the screen editor to edit the record. When you return from the editor, LifeLines asks
you to confirm the operation. If you do, the new person is added to the database. If not, the new
person is not added. In both cases the display does not change.

Add spouse to family. Add a spouse to the family. LifeLines asks you to identify the new spouse. If
the command you ran just before the s command were the n command, LifeLines guesses that the new
spouse will be the person just created. LifeLines asks if this is the case, and if so, makes that person
the second spouse in the family. If not, LifeLines asks you to identify the other spouse.

Add child to family. Add a child to the family. LifeLines asks you to identify the new child. If the
command you ran just before the 2 command were the n command, LifeLines guesses that the new
child will be the person just created. LifeLines asks if this is the case, and if so, adds that child to
the family. If not, LifeLines asks you to identify the child. If the family already has children,
LifeLines also asks where to place the new child in the family.

Remove spouse from. Remove a parent/spouse from the family. LifeLines asks you to identify the
person, and if you do, removes him or her. The person is not removed from the database.

q

LifeLines Reference Manual — 14

Remove child from. Remove a child from the family. LifeLines asks you to identify the child
should, and if you do, removes the child from the family. The person is not removed from the
database.

Swap two children. Swap (change the chronological order) of any two children in the family.
LifeLines asks you to identify the two children and then swaps them.

Enter family tandem. This command takes you to the tandem family browse mode. LifeLines asks you
to identify a second family, and then takes you to the tandem family mode, displaying both the two
families.

Browse to persons. Browse to a new person or list of persons. You can identify a person or list by name,
by key, or by list name. If you successfully identify a new person or persons you will switch into the
person or list browse modes.

Browse to person. Zip browse to a new person. LifeLines asks you to identify a person by name or key
value, and if you do, browses to that person.

Return to main menu. Return to the LifeLines main menu.

TANDEM PERSON BROWSE MODE

The tandem person browse mode displays information about two persons. Its main use it to support the
person merging operation. The top two panels show two persons in the format used in the person and list
mode displays. The bottom panel gives the menu of available commands. For example:

person: Thomas Trask WETMORE Sr (25)
born: 13 March 1866, St. Mary's Bay, Digby, Nova Scotia
died: 17 February 1947, New London, New London, Connecticut
father: Daniel Lorenzo WETMORE, b. 1821, N.S., d. 1903, Conn. (48)
mother: Mary Ann DOTY, b. 1824, N.S., d. 1897, Conn. (59)
spouse: Margaret Ellen KANEEN, b. 1855, Eng., d. 1900, Conn. (26)

person: Thomas Trask WETMORE IV (1)
born: 18 December 1949, New London, New London, Connecticut
died:
father: Thomas Trask WETMORE III, b. 1925, Conn. (6)
mother: Joan Marie HANCOCK, b. 1928, Conn. (7)
spouse: Luann Frances GRENDA, m. 1970, N.Y. (2)

Please choose an operation:

e Edit top person S Browse top spouse/s a Add family

t Browse to top c Browse top children j Merge bottom to top
f Browse top father b Browse to persons X Switch top/bottom
m Browse top mother d Copy top to bottom g Return to main menu

LifeLines - Two Person Browse Mode

e

t
f

Edit top person. Edit the top person's record. LifeLines writes the record to a file, and puts you in the
screen editor to edit the file. When you return from the editor, LifeLines asks you to confirm the
update; the person is changed only if you do so.

Browse to top. Switch to the person display with the top person as current person.

Browse top father.

m Browse top mother. Replace the top person with his/her father or mother.

S

Browse top spouse/s. Replace the the top person with his/her spouse. If the person has more than
one spouse, LifeLines asks you to identify one.

X

q

LifeLines Reference Manual — 15

Browse top children. Replace the top person with one of his/her children. If the person has more
than one child, LifeLines asks you to identify the one.

Browse to persons. Browse to a new person or list of persons. LifeLines asks you to identify a new
person or persons by name, key or list name, and then does as described in the section on identifying a
person.

Copy top to bottom. Copy the top person into the bottom person. A new person is not created; the same
person is displayed twice.

Add family. Create a new family record; LifeLines assumes the two displayed persons are to become
the spouses/ parents in the new family; they must be of opposite sex.

Merge bottom to top. Merge the bottom person into the top person. LifeLines combines the two person
records and places you in the screen editor to edit the combined record. When you are done, if you
confirm the operation, LifeLines removes the bottom person from the database, and the top person is
given the combined record. See the section on merging.

Switch top/bottom. Swap the two persons in the display.

Return to main menu. Return to the LifeLines main menu.

TANDEM FAMILY BROWSE MODE

The tandem family browse mode displays information about two families. Its main use it to support the
family merging operation.The top two panels provide information about the two families you are
browsing, and the bottom panel holds the menu of available commands. For example:

father: Thomas Trask WETMORE IV (1)
mother: Luann Frances GRENDA (2)

married: 1 August 1970, Governors Island, New York, New York

born: 18 December 1949, New London, New London, Connecticut
born: 10 July 1949, Pittsburgh, Allegheny, Pennsylvania

child: Anna Vivian WETMORE, b. 1974, Alaska (3)

father: Thomas Trask WETMORE III (6)
wife: Joan Marie Hancock (7)

married: 5 February 1949, New London, New London, Connecticut

born: 26 October 1925, New London, New London, Connecticut
born: 6 June 1928, New London, New London, Connecticut

child: Thomas Trask WETMORE IV, b. 1949, Conn. (1)

Please choose an operation:

e Edit top family f Browse to fathers j Merge bottom to top
t Browse to top m Browse to mothers g Return to main menu
b Browse to bottom X Switch top/bottom

LifeLines — Two Family Browse Mode

e

t
b

Edit top family. This command lets you edit the top family's record. LifeLines writes the record into
a file, and then puts you into an editor to edit that information. When you return from the editor,
LifeLines asks you whether you are sure you want to update the family in the database. The family
is changed only if you answer yes.

Browse to top. Change to the family browse mode with the top family the current family.

Browse to bottom. Change to the single family browse mode with the bottom family the current
family.

f

LifeLines Reference Manual — 16

Browse to fathers.

m Browse to mothers. Change to the tandem person mode with the fathers or mothers of the two

q

families as the two persons.
Switch top/bottom. Swap the two families in the display.

Merge bottom to top. Merge the bottom family into the top family. LifeLines combines the two
family records and places you in the screen editor to edit the combined record. When you are done, if
you confirm the operation, LifeLines deletes the bottom family from the database, and the top
family is given the combined record. See the section on merging.

Return to main menu. Return to the LifeLines main menu.

PEDIGREE BROWSE MODE

The pedigree browse mode displays a four-generation pedigree for the current person. The top panel
holds the pedigree, and the bottom panel holds the menu of available commands. For example:

Thomas Trask WETMORE Sr [1866-1947] (25)

John WETMORE [1755-1848] (32)
Daniel Van Cott WETMORE [1791-1881] (41)
Anna VAN COTT [1757-1802] (33)
Daniel Lorenzo WETMORE [1821-1903] (48)
Thomas TRASK [-1836] (81)
Hannah TRASK [1797-1829] (46)
Susannah PORTER [1754-] (82)

Samuel DOTY [1759-]1 (501)
Samuel DOTY [1787-] (74)
Hephzibah PORTER [1764-1853] (502)
Mary Ann DOTY [1827-1897] (59)
Nathan SAVERY [1748-1826] (510)
Lydia SAVERY [1806-] (75)
Deidamia SABEAN [1765-1845] (511)

Please choose an operation:

e Edit the person m Browse to mother g Browse to family
i Browse to person s Browse to spouse/s b Browse to persons
f Browse to father c Browse to children g Return to main menu

LifelLines — Pedigree Browse Mode

e
i

f

Edit the person. Edit the current person.
Browse to person. Change to the person display mode with the current person.

Browse to father.

m Browse to mother. Browse to the father or mother of the current person, shifting the pedigree one

generation back. If the parent is not in the database, there is no change.

Browse to spouse/s. Browse to a spouse of the current person, shifting the display to the pedigree of
that person. If the current person has more than one spouse, LifeLines asks you to identify the spouse;
if the person has no spouse there is no change.

Browse to children. Browse to a child of the current person, shifting the pedigree one generation
forward. If the current person has more than one child, LifeLines asks you to identify the child; if
the person has no children there is no change.

Browse to family. Change to the family display; the family will be the one that the current person
belongs to as spouse or parent. If there are more than one, LifeLines asks you to identify the proper
one.

LifeLines Reference Manual —17

b Browse to persons. Browse to another person or list of persons; if you identify a single person the
display remains in the pedigree display; if you identify more than one person the display changes to
the list browse mode.

q Return to main menu. Leave the pedigree browsing mode and return to the main menu.

ADD OPERATION

If you choose the add operation from the main menu, LifeLines displays the add menu:

What do you want to add?

Person - add new person to the database

Family - create family record from one or two spouses
Child - add a child to an existing family

Spouse - add a spouse to an existing family

Quit - return to the previous menu

Q 0 Q o

These operations work in a straightforward way. LifeLines asks you the necessary questions, and lets
you cancel at any time. The operations provided by this menu are also available from the browsing
modes, and are often easier to perform there.

DELETE OPERATION

If you choose the delete operation at the main menu, LifeLines displays the delete menu:

What do you want to delete?
c Child - remove a child from his/her family
S Spouse - remove a spouse from a family
p Person - remove a person completely
d Quit - return to the previous menu

These operations also work in a straightforward way. LifeLines asks you the necessary questions and
lets you cancel at any time.

You may also remove a child from his/her family, or remove a spouse/parent from his/her family,
from the person browsing mode. In both cases, only a relationship is removed, not a person. On the other
hand, the delete menu must be used if you want to completely remove a person from the database; this
cannot be done from the browsing mode.

There is no special operation for removing a family record. LifeLines silently removes any family
record that has no parent or child associated with it.

CHARACTER TRANSLATION

If you choose the modify character translation tables operation from the main menu, LifeLines displays
the character translation menu:

Which character mapping do you want to edit?
e Editor to Internal mapping

Internal to Editor mapping

GEDCOM to Internal mapping

Internal to GEDCOM mapping

Internal to Display mapping

Internal to Report mapping

Return to main menu

QKR QX F 38

LifeLines Reference Manual — 18

LifeLines has little built-in knowledge of character codes. If you use 7-bit ASCII characters you will not
encounter problems. However, many European and other languages require additional characters, and
there are many 8-bit and other schemes for encoding those characters. LifeLines knows about none of
them. However, LifeLines provides a number of character translation features you can use to manage
character translation.

LifeLines provides facilities for mapping between characters whenever a data record changes form.
LifeLines supports four forms:

internal | for records in the database
editor for records being edited

display | for records being displayed
report for records written to output file

When converting text from one form to another LifeLines normally does not convert characters codes.
You may, however, override this default behavior by creating translation tables that LifeLines will
use when converting between forms. There are six translation tables you may define. The following
table shows the six tables and describes when they are applied:

internal to editor when converting from internal, database form to editor form

editor to internal when converting from editor form back to internal, database form
GEDCOM to internal | when reading GEDCOM input records and writing them to database
internal to GEDCOM | when writing internal database records to external GEDCOM file
internal to display when displaying a record in a browsing mode display screen
internal to report when writing internal database records to external report file

After you select a translation table you are placed in the editor to edit the table. Translation tables are
made up of lines that look like:

pattern pattern

where a tab separates the patterns. Each pattern is an arbitrary sequence of verbatim ASCII characters
and escape sequences. Translation occurs by finding all occurrences that match left patterns and
replacing them with the corresponding right patterns.

There are four escape mechanisms used in patterns:

#nnn nnn is a decimal character value

$hh hh is a hexadecimal character value
\# represents the # character

\$ represents the $ character

\\ represents the \ character

The character translation feature is not fully tested, and not all translations are currently
implemented.

LifeLines Reference Manual —19

MISCELLANEOUS UTILITIES

If you choose the miscellaneous utilities operation, LifeLines displays the utilities menu:

What utility do you want to perform?

s Save the database in a GEDCOM file
Read in data from a GEDCOM file
Find a person's key value
Identify a person from key value
Show database statistics
Show memory statistics
Edit the place abbreviation file
Edit the user options file
g Return to the main menu

O MO B3 Qr ~H

s Save the database in a GEDCOM file. This command saves the complete LifeLines database in a
GEDCOM file. All person, family, event, source and user-defined records are stored. This command
may be used to periodically back up your database. When you use this command, LifeLines asks you
for the name of the file. If you have defined the LLARCHIVE shell variable, LifeLines will store
the file in the directory named in the variable.

r Read in data from a GEDCOM file. This command allows you restore a complete database from a
GEDCOM file. When you select this command, LifeLines asks you for the name of the GEDCOM file.
This command can also be used to import data from a GEDCOM file to an existing database. When
LifeLines performs this command, it first reads the entire GEDCOM file and checks it for validity.
If there are problems in the file, LifeLines describes them, writing them to the file err.log, and does
not add any records to the database. If there are no problems, LifeLines adds all the records found in
the file to the database (only header and trailer records are not stored in the database).

k Find a person's key value. This command finds the internal key value of a person.

i Identify a person from key value. This command identifies the person that has a particular internal
key value.

d Show database statistics. This command summarizes the contents of the current database. It
displays the number of person, family, source, event and other records in the database.

m Show memory statistics. This command is used by the author for debugging.

e Edit the place abbreviation file. This command allows you to edit the place abbreviations file. This
file defines the abbreviations that are used by LifeLines when it creates lists of persons for you to
select from. Each line in the file has the format:

word: abbr

where word is a word to be abbreviated, and abbr is its abbreviation. The word and its
abbreviation are separated by a colon. For example:

Connecticut:Conn.
Massachusetts:Mass.
Nova Scotia:N.S.

When LifeLines constructs lists of persons for you to select from, it looks up the last component of
certain PLAC lines in this file, and if it finds that component, replaces it with its abbreviation.

o Edit the user options file. This command allows you to edit the user options file. The user options file
is a record kept in the database that holds user selectable options. Each option has a name and a
string value. Each line in the options file has the format:

LifeLines Reference Manual — 20

option=value

where option is the name of an option and value is the option’s string value. If the value is more
than one line long, then the last character in each non-final line must be a backslash. In version 3.0.2
there are four options:

INDIREC Person record edit template
EVENREC Event record edit template
SOURREC Source record edit template
OTHRREC Other record edit template

For example if you would like to replace the default person record template with the following:

0 INDI
1 NAME //
1 SEX

you would edit the user option file to contain:

INDIREC=0 INDI\
1 NAME //\
1 SEX

q Return to main menu. This command returns you to the main menu.

HANDLING SOURCE, EVENT AND USER-DEFINED RECORDS

LifeLines supports source, event and other, user-defined record types. You access these features through
the x operation from the main menu. When you select this operation LifeLines displays the following
menu:

What activity do you want to perform?

1 Add a source record to the database
Edit source record from the database
Add an event record to the database
Edit event record from the database
Add an other record to the database
Edit other record from the database
g Return to the main menu

[o) O I S VI V]

The implementation of source, event and user-defined records is relatively new in LifeLines, and is still
primitive. For example, sources cannot be searched by title or by author, you cannot browse to sources or

events, as you can to persons and families, and so forth. In addition, there is no way to delete these new
records. These shortcomings may be addressed in future releases.

1 Add a source record to the database. This operation is used to add a new source record to the
database. LifeLines creates a template source and puts you in the screen editor to edit the template.
The default template is:

0 SOUR

1 REFN

1 TITL Title
1 AUTH Author

Do not change the 0 SOUR line. Otherwise you may edit this record any way you like. The I REFN
line is a special line you can use to give the source a symbolic name that can be used in other records to
refer to the source record. See the section on using REFN values. Because many sources have a title

LifeLines Reference Manual — 21

and an author, the default template has these lines. Here is how I recorded one of the sources in my
database:

0 SOUR
1 REFN jcw
1 TITL The Wetmore Family of America, and its Collateral Branches: with
2 CONT Genealogical, Biographical, and Historical Notices
1 AUTH James Carnahan Wetmore
1 PUBL
2 DATE 1861
2 PLAC Albany, New York
2 INST Munsell and Rowland
2 ADDR 78 State Street

2 Edit source record from the database. Use this operation to edit an existing source record already in
the database. When you select this operation LifeLines asks you to identify a source:

Which source record do you want to edit?
enter key or refn:

Identify a source by entering its key value, with or without the leading S, or by entering its REFN
value. LifeLines retrieves the record and puts you in the editor with the record.

3 Add an event record to the database. This operation adds a new event record to the database.

LifeLines creates a template event and puts you in the screen editor to edit the template. The default
template is:

EVEN
REFN
DATE
PIAC
INDI
2 NAME
2 ROLE
1 SOUR

e =

Do not change the 0 EVEN line. Otherwise you may edit this record any way you like. The I REFN
line allows you to give this event a symbolic name you can use when you want to refer to this event
from other records. See the section on using REFN values. The default template suggests that an
event has a date, a place, and refers to persons in roles with respect to the event. There is far less
experience with event-based GEDCOM than there is with simple person and family GEDCOM. You
may even be wondering why you would need event records when you can simply tuck events away in
person and family records. This is a topic may get covered in an appendix.

4 Edit event record from the database. Use this operation to edit an existing event record from the
database. When you select this operation LifeLines asks you to identify an event:

Which event record do you want to edit?
enter key or refn:

You identify a event by entering its key value, with or without the leading E, or by entering its
REFN value. LifeLines retrieves the record and places you in the screen editor with the record.

5 Add an other record to the database. This operation adds a new user-defined record to the database.
LifeLines creates a template and puts you in the screen editor to edit the template. The default
template is:

0 XXXX
1 REFN

LifeLines Reference Manual — 22

Replace XXXX with the tag string you select for the type of the new record. You are free to choose
any tag value except INDI, FAM, SOUR and EVEN. For example, if you keep record information
about the ships that your North American immigrant ancestors arrived on, you would keep records
about those ships in your database; the tag SHIP suggests itself for such records. The 1 REFN line
allows you to give this record a symbolic name you can use when you want to refer to it from other
records. See the section on using REFN values.

6 Edit other record from the database. Use this operation to edit an existing user-defined record from
the database. When you select this operation LifeLines asks you to identify the record:

What record do you want to edit?
enter key or refn:

You identify a record by entering its key value, with or without the leading X, or by entering its
REFN value. LifeLines retrieves the record and places you in the screen editor with the record.

FAMILY STRUCTURE AND MERGING PERSONS AND FAMILIES

LifeLines 3.0.2 has relaxed most of restrictions on family structure that were imposed by earlier
versions. For example, a family record may have more than one parent/spouse of the same sex; a person
may be a child in more than family. This is a controversial issue. Some users insist that family
relationships should imply biological relatedness, and that all other relationships should be handled
by different means. Others insist that non-traditional families (any number of parents/spouses of any
sex) should be allowed, and that children can be members of more than one family (eg, natural family
and adoptive family). LifeLines no longer takes a position on this matter; you are free to set up families
any way you like; the operations that add spouses and children to families no longer check for non-
traditional arrangements. It is possible that a future release will include a user option to either
disallow or to ask for confirmation about non-traditional relationships.

LifeLines provides features for merging persons together and for merging families together. The person
merging feature is accessed from the tandem person browse mode, and the family merging feature is
accessed from the tandem family browse mode. You browse to the two persons or families you want to
merge and then use the j command. Merging is necessary when you discover that two or more person
records, or two or more family records, represent the same person or family, respectively.

Versions of LifeLines prior to 3.0.2 required that persons and families meet certain criteria before they
could be merged. The criteria ensured that the merged persons and families would still meet traditional
family structuring rules. With the relaxation of the structuring rules, restrictions on merging have also
been removed. It is now possible to create non-traditional relationships by merging traditional persons
and/or families. For example, if you merge two persons that happen to be children in two different
families, the merged person will be a child in both families. If you want to maintain only traditional
relationships in your database you may have to makes further to changes to relationships after you
complete a merge operation.

LINKING RECORDS TOGETHER AND USING THE REFN FEATURE

Records in a LifeLines database may refer to other records via cross-reference links. The lineage-linked
references are maintained directly by LifeLines through operations found in the browsing mode menus.
These references are the links from a person to families (I FAMC and 1 FAMS), and the links from a
family to persons (1 HUSB, 1 WIFE and 1 CHIL). Because LifeLines maintains these links you are not
allowed to change these lines when you are editing records. There are a couple of seeming exceptions to
this rule. For example, you may change the order of 1 CHIL lines in a family record in order to change
the order of children in a family, and you may change the order of 1 FAMS lines in a person record to
change the order of families the person was a spouse or parent in. These operations are allowed because
they don’t affect which person records refer to which family records and vice versa.

Besides the lineage-links that are maintained by LifeLines, you may place your own links in records.

LifeLines Reference Manual — 23

Probably the most common example of this is referring events within a person record to the record of the
information source for the event. For example:

0 @QI23@ INDI
1 NAME Thomas/Whitmore/
1 BIRT

2 DATE about 1615
2 PIAC England
2 SOUR @s3@

0 @sS3@ SOUR

1 REFN cat

1 TITL New England Marriages Prior to 1700
1 AUTH Clarence Almon Torrey

The 2 SOUR @S3@ line in the person record refers to the source record. LifeLines allows any specific
structure within a record (in this case a birth event) to refer to another record. It is not possible to refer
to a specific location within another record, though this may be supported eventually.

This example implies that when linking one record to another you must know the key of the target
record (S3 in the example). This is not desirable because internal record keys may change when the
records are exported from one database or imported to another.

Because internal key values are not permanent, LifeLines allows you to assign a permanent user-defined
key to any record in the database using the 1 REFN line. The value of this line is a string that you
choose as your permanent key value for the record. When adding a link to a record that has a user
REFN key value, you may use that value instead of the internal key value. For example, when adding
the person in the previous example you could edit the new record as follows:

0 INDI
1 NAME Thomas/Whitmore/
1 BIRT

2 DATE about 1615

2 PLAC England

2 SOUR <cat>

Instead of using the actual key value of the source, S3, the REFN value cat was used. The REFN
value must be enclosed by angle brackets when used this way. LifeLines automatically replaces the
REFN link with the proper internal key value when the record is stored in the database.

The REFN value may also be used when searching for person, source, event and user-defined records.
You should not add more than one REFN line to a record, and every REFN value should be unique.

THE LIFELINES PROGRAMMING SUBSYSTEM AND REPORT GENERATOR

The LifeLines programming subsystem lets you produce reports in any style or layout. You may generate
files in troff, Postscript, TeX, SGML or any other ASCII-based format, for further text processing and
printing. You access the report generator by choosing the » command from the main menu. You may also
use the programming subsystem to create query and other processing programs that write their results
directly upon the screen. For example, there is a LifeLines program that computes the relationship
between any two persons in a database.

Each LifeLines program is written in the LifeLines programming language, and the programs are stored
in normal files. When you direct LifeLines to run a program, it asks you for the name of the program
file, asks you where you want the program’s output written, and then runs the program.

LifeLines Reference Manual — 24

For example, say you want LifeLines to generate an ahnentafel. Such a report might look like:

1. Thomas Trask WETMORE IV

b. 18 December 1949, New London, Connecticut
2. Thomas Trask WETMORE III

b. 15 October 1925, New London, Connecticut
3. Joan Marie HANCOCK

b. 6 June 1928, New London, Connecticut
4. Thomas Trask WETMORE Jr

b. 5 May 1896, New London, Connecticut

d. 8 November 1970, New London, Connecticut
5. Vivian Genevieve BROWN

b. 5 April 1896, Mondovi, Wisconsin
6. Richard James HANCOCK

b. 18 August 1904, New London, Connecticut

d. 24 December 1976, Waterford, Connecticut
7. Muriel Armstrong SMITH

b. 28 October 1905, New Haven, Connecticut
8. Thomas Trask WETMORE Sr

b. 13 March 1866, St. Mary's Bay, Nova Scotia

d. 17 February 1947, New London, Connecticut
9. Margaret Ellen KANEEN

b. 27 October 1859, Liverpool, England

d. 10 May 1900, New London, Connecticut
... lots more

Here is a LifeLines program that generates this report:

proc main ()

{
getindi(indi)
list(ilist)
list(alist)

enqueue(ilist, indi)

enqueue(alist, 1)

while(indi, dequeue(ilist)) {
set(ahnen, dequeue(alist))

if (par, father(indi)) {
enqueue(ilist, par)
enqueue(alist, mul(2,ahnen))

}

if (par,mother(indi)) {
enqueue(ilist, par)

}

d(ahnen) ". " name(indi) nl()
if (e, birth(indi)) { " b. " long(e) nl() }
if (e, death(indi)) { " d. " long(e) nl() }

enqueue(alist, add(1l,mul(2,ahnen)))

Say this program is in the file ahnen. When you choose the r option from the main menu, LifeLines

asks:

LifeLines Reference Manual — 25

What is the name of the report program?
enter string:

You enter ahnen. Since the program generates a report, LifeLines asks where to write that report:

What is the name of the output file?
enter file name:

You enter a file name, say my.ahnen. LifeLines reads the program ahnen, executes the program, and
writes the report output to my.ahnen. LifeLines reports any syntax or run-time errors found while
trying to run the program.

A LifeLines program is made up of procedures and functions; every program must contain at least one
procedure named main. The main procedure runs first; it may call other procedures, functions and built-
in functions. In the ahnentafel example there is only one procedure.

A procedure body is a sequence of statements. In the example program the first five statements are:

getindi(indi)
list(ilist)
list(alist)
enqueue(ilist, indi)
enqueue(alist, 1)

The first statement calls the getindi (get individual) built-in function, which causes LifeLines to ask
you to identify a person using the zip browse style of identification:

Identify person for interpreted report
enter name:

After you identify a person, he or she is assigned to the variable indi. The next two statements declare
two list variables, ilist and alist. Lists hold sequences of things; there are operations for placing
things on lists, taking things off, and iterating through the list elements. In the example, ilist holds a
list of ancestors, in ahnentafel order, who have not yet been reported on, and alist holds their
respective ahnentafel numbers.

The next two statements call the enqueue function, adding the first members to both lists. The person
identified by the getindi function is made the first member of ilist, and the number one, this person's
ahnentafel number, is made the first member of alist.

The rest of the program is:

while(indi, dequeue(ilist)) {
set (ahnen, dequeue(alist))
d(ahnen) ". " name(indi) nl()
if (e, birth(indi)) { " b. " long(e) nl() }
if (e, death(indi)) { " d. " long(e) nl() }
if (par, father(indi)) {
enqueue(ilist, par)
enqueue(alist, mul(2,ahnen))
}
if (par, mother(indi)) {
enqueue(ilist, par)
enqueue(alist, add(l,mul(2,ahnen)))

}

This is a loop that iteratively removes persons and their ahnentafel numbers from the two lists, and
then prints their names and birth and death information. If the persons have parents in the database,

LifeLines Reference Manual — 26

their parents and their parents’ ahnentafel numbers are then put at the ends of the lists. The loop
iterates until the list is empty.

The loop is a while loop statement. The line:

while(indi, dequeue(ilist)) {

removes (via dequeue) a person from ilist, and assigns the person to variable indi. As long as there
are persons on ilist, another iteration of the loop follows.

The statement:

set (ahnen, dequeue(alist))

is an assignment statement. The second argument is evaluated; its value is assigned to the first
argument, which must be a variable. Here the next number in alist is removed and assigned to variable
ahnen. This is the ahnentafel number of the person just removed from ilist.

The line:

d(ahnen) ". " name(indi) nl()

contains four expression statements; when expressions are used as statements, their values, if any, are
treated as strings and written directly to the report output file. The d function converts its integer
argument to a numeric string. The ”. ” is a literal (constant) string value. The name function returns the
default form of a person's name. The nl function returns a string containing the newline character.

The next two lines:

if(e, birth(indi)) { " b. " long(e) nl() }
if(e, death(indi)) { " d. " long(e) nl() }

write out basic birth and death information about a person. These lines are if statements. The second
argument in the conditional is evaluated and assigned to the first argument, which must be a variable.
The first if statement calls the birth function, returning the first birth event in a person's record. If the
event exists it is assigned to variable e, and the body (the items between the curly brackets) of the if
statement is executed. The body consists of three expression statements: a literal, and calls to the long
and nl functions. Long takes an event and returns the values of the first DATE and PLAC lines in the
event.

Finally in the program is:

if (par, father(indi)) {
enqueue(ilist,par)
enqueue(alist,mul(2,ahnen))

}

if (par,mother(indi)) {
enqueue(ilist,par)
enqueue(alist,add(1l,mul(2,ahnen)))

}

These lines add the father and mother of the current person, if either or both are in the database, to
ilist. They also compute and add the parents' ahnentafel numbers to alist. A father’s ahnentafel
number is twice that of his child. A mother’s ahnentafel number is twice that of her child plus one.
These values are computed with the mul and add functions.

LifeLines Reference Manual — 27

LIFELINES PROGRAMMING REFERENCE

LifeLines programs are stored in files you edit with a screen editor. Programs are not edited from within
the LifeLines program; edit them as you would any text file. The programs may be stored in any
directories; they do not have to be kept in or associated with LifeLines databases. You may set the
LLPROGRAMS shell variable to hold a list of directories that LifeLines will use to automatically
search for programs when you request program execution.

Procedures and Functions

A LifeLines program is made up of one or more procedures and functions. A procedure has format:

proc name (params) { statements }

Name is the name of the procedure, params is an optional list of parameters separated by commas,
and statements is a list of statements that make up the procedure body. Report generation begins with
the first statement in the procedure named main. Procedures may call other procedures and functions.
Procedures are called with the call statement described below.When a procedure is called, the
statements making up its body are executed.

A function has format:

func name (params) { statements }

Name, params and statements are defined as in procedures. Functions may call other procedures and
functions. When a function is called the statements that make it up are executed. A function differs from
a procedure by returning a value to the procedure or function that calls it. Values are returned by the
return statement, described below. Recursive functions are allowed. A function is called by invoking it
in an expression.

Comments

You may comment your LifeLines programs using the following notation:

/*...comment text including any characters except */... */

Comments begin with a /* and end with a */. Comments may appear on lines of their own or on lines
that have program constructs. Comments may span many lines. Comments may not be nested.

Statements

There are a number of statement types. The simplest is an expression statement, an expression that is
not part of any other statement or expression. Expressions are defined more fully below. An expression
statement is evaluated, and if its value is non-null (non-zero), it is assumed to be a string, and written to
the program output file. If its value is null, nothing is written to the output file. For example, the
expression name(indi), where indi is a person, returns the person’s name and writes it to the output

file. On the other hand, the expression set(n, nspouses(indi)) assigns the variable n the number of
spouses that person indi has, but since set returns null, nothing is written to the output file.

The programming language includes if statements, while statements and procedure call statements,
with the following formats:

if ([varb,] expr) { statements }
[elsif ([varb], expr) { statements } 1*
[else { statements }]

while ([varb,] expr) { statements }

call name (args)

Square brackets indicate optional parts of the statement syntax. An if statement is executed by first

LifeLines Reference Manual — 28

evaluating the conditional expression in the if clause. If non-zero, the statements in the if clause are
evaluated, and the rest of the if statement, if any, is ignored. If the value is zero, and there is an elsif
clause following, the conditional in the elsif clause is evaluated, and if non-zero, the statements in
that clause are executed. Conditionals are evaluated until one of them is non-zero, or until there are no
more. If no conditional is non-zero, and if the if statement ends with an else clause, the statements in
the else clause are executed. There are two forms of conditional expressions. If the conditional is a
single expression, it is simply evaluated. If the conditional is a variable followed by an expression, the
expression is evaluated and its value is assigned to the variable.

The while statement provides a looping mechanism. The conditional is evaluated, and if non-zero, the
body of the loop is executed. After each iteration the expression is reevaluated; as long as it remains
non-zero, the loop is repeated.

The call statement provides procedure calls. Name must match one of the procedures defined in the
report program. Args is a list of argument expressions separated by commas. Recursion is allowed.
When a call is executed, the values of its arguments are evaluated and used to initialize the
procedure's parameters. The procedure is then executed. When the procedure completes, execution
resumes with the first item after the call.

The report language also includes the following statement types:

include(string)
global (varb)
set(varb, expr)
continue()
break()
return([expr])

The include statement includes the contents of another file into the current file; its string expression is
the name of another LifeLines program file. It is described in more detail below. The global statement
must be used outside the scope of any procedure or function; it declares a variable to have global scope.
The set statement is the assignment statement; the expression is evaluated, and its value is assigned
to the variable. The continue statement jumps to the bottom of the current loop, but does not leave the
loop. The break statement breaks out of the most closely nested loop. The return statement returns from
the current procedure or function. Procedures have return statements without expressions; functions
have return statements with expressions. None of these statements return a value, so none has a direct
effect on program output.

In addition to these conventional statements, the report generator provides other iterator statements
for looping through genealogical and other types of data. For example, the children statement
iterates through the children of a family, the spouses statement iterates through the spouses of a
person, and the families statement iterates through the families that a person is a spouse or parent in.
These iterators and others are described in more detail later under the appropriate data types.

Expressions

There are four types of expressions: literals, integers, variables and built-in or user defined function
calls.

A literal is any string enclosed in double quotes; its value is itself. An integer is any integer constant;

its value is itself. A variable is a named location that can be assigned different values during program
execution. The value of a variable is the last value assigned to it. Variables do not have fixed type; at
different times in a program, the same variable may be assigned data of completely different types. An
identifier followed by comma-separated list of expressions enclosed in parentheses, is either a call to a
built-in function or a call to a user-defined function.

Include Feature

The LifeLines programming language provides an include feature. Using this feature one LifeLines

LifeLines Reference Manual — 29

program can refer to other LifeLines programs. This feature is provided by the include statement:

include(string)

where string is a quoted string that is the name of another LifeLines program file. When an include
statement is encountered, the program that it refers to is read at that point, exactly as if the contents of
included file had been in the body of the original file at that point. This allows you to create LifeLines
program library files that can be used by many programs. Included files may in turn contain include
statements, and so on to any depth. LifeLines will use the LLPROGRAMS shell variable, if set, to
search for the include files.

Built-in Functions

There is a long list of built-in functions, and this list will continue to grow for some time. The first
subsection below describes the value types used in LifeLines programs; these are the types of variables,
function parameters and function return values. In the remaining sections the built-in functions are
separated into logical categories and described.

Value Types
ANY union of all types
INT integer (on most systems a 32-bit signed value)
BOOL boolean (0 represents false; anything else represents true)
STRING | text string
LIST arbitrary length list of any values

TABLE keyed look-up table
INDI person; reference to a GEDCOM INDI record

FAM family; reference to a GEDCOM FAM record

SET arbitrary length set of persons

NODE GEDCOM node; reference to a line in a GEDCOM tree/ record
EVENT event; reference to substructure of nodes in a GEDCOM record
VOID type with no values

In the summaries of built-in functions below, each function is shown with its argument types and its
return type. The types are from the preceding list. Sometimes an argument to a built-in function must be
a variable; when this is so its type is given as XXX_V, where XXX is one of the types above. The
built-ins do not check the types of their arguments. Variables can hold values of any type, though at
any one time they will hold values of only one type. Note that EVENT is a subtype of NODE, and
BOOL is a subtype of INT. Built-ins with type VOID actually return null (zero) values.

LifeLines Reference Manual — 30

Arithmetic and Logic Functions

INT add(INT, INT [,INT]*) addition - two to 32 arguments
INT sub(INT, INT) subtraction

INT mul(INT, INT [,INT]*) multiplication - two to 32 arguments
INT div(INT, INT) division

INT mod(INT, INT) modulus (remainder)

INT exp(INT, INT) exponentiation

INT neg(INT) integer negation

VOID incr(INT V) increment variable by one

VOID decr (INT V) decrement variable by one

BOOL and (BOOL, BOOL [,BOOL]*) logical and - two to 32 arguments
BOOL or(BOOL, BOOL [,BOOL]*) logical or - two to 32 arguments
BOOL not (BOOL) logical not

BOOL eq(ANY, ANY) equality (not strings)

BOOL ne(ANY, ANY) non-equality

BOOL 1t (ANY, ANY) less than

BOOL gt (ANY, ANY) greater than

BOOL le(ANY, ANY) less than or equal

BOOL ge(ANY, ANY) greater than or equal

Add, sub, mul and div do integer arithmetic. Functions add and mul can have two to 32 arguments;

the sum or product of the full set of arguments is computed. Functions sub and div have two arguments
each; sub subtracts its second argument from its first, and div divides its first argument by its second.
The mod function returns the remainder after dividing the first parameter by the second. If the second
argument to div or mod is zero, these functions return 0 and generate a run time error. Exp performs
integer exponentiation. Neg negates its argument.

Incr and decr increment by one and decrement by one, respectively, the value of a variable. The
argument to both functions must be a variable.

And and or do logical operations. Both functions take two to 32 arguments. All arguments are and’ed or
or’ed together, respectively. The arguments are evaluated from left to right, but only up to the point
where the final value of the function becomes known. Not does the logical not operation.

Eq, ne, It, le, gt and ge evaluate the six ordering relationships between two integers.

LifeLines Reference Manual — 31

Person Functions

STRING name(INDI [,BOOL]) default name of

STRING fullname(INDI, BOOL, BOOL, INT) | many name forms of

STRING surname(INDI) surname of

STRING givens(INDI) given names of

STRING trimname(INDI,INT) trimmed name of

EVENT birth(INDI) first birth event of

EVENT death (INDI) first death event of

EVENT baptism(INDI) first baptism event of

EVENT burial (INDI) first burial event of

INDI father (INDI) first father of

INDI mother (INDI) first mother of

INDI nextsib(INDI) next (younger) sibling of

INDI prevsib(INDI) previous (older) sibling of

STRING sex(INDI) sex of

BOOL male(INDI) male predicate

BOOL female(INDI) female predicate

STRING pn(INDI, INT) pronoun referring to

INT nspouses (INDI) number of spouses of

INT nfamilies(INDI) number of families (as spouse/ parent) of
FAM parents (INDI) first parents” family of

STRING title(INDI) first title of

STRING key (INDI|FAM [,BOOL]) internal key of (work for families also)
STRING soundex(INDI) SOUNDEX code of

NODE inode(INDI) root GEDCOM node of

NODE root (INDI) root GEDCOM node of

INDI indi(STRING) find person with key value

INDI firstindi() first person in database in key order
INDI nextindi(INDI) next person in database in key order
INDI previndi(INDI) previous person in database in key order
spouses (INDI, INDI, FAM, INT) { } loop through all spouses of

families (INDI, FAM, INDI, INT) { } loop through all families (as spouse) of
forindi (INDI, INT) { } loop through all persons in database

These functions take a person as a parameter and return information about him or her.

Name returns the default name of a person; this is the name found on the first I NAME line in the
person’s record; the slashes are removed and the surname is made all capitals; name can take an
optional second parameter - if it is true the function acts as described above; if false, the surname is
kept exactly as it is in the record.

Fullname returns the name of a person in a variety of formats. If the second parameter is true the
surname is shown in upper case; otherwise the surname is as in the record. If the third parameter is
true the parts of the name are shown in the order as found in the record; otherwise the surname is given
first, followed by a comma, followed by the other name parts. The fourth parameter specifies the
maximum length field that can be used to show the name; various conversions occur if it is necessary to
shorten the name to fit this length.

Surname returns the surname of the person, as found in the first 1 NAME line; the slashes are
removed. Givens returns the given names of the person in the same order and format as found in the
first 1 NAME line of the record. Trimname returns the default name of the person trimmed to the

LifeLines Reference Manual — 32

maximum character length given in the second variable.

Birth, death, baptism and burial return the first birth, death, baptism and burial event in the
person’s record, respectively. An event is a level 1 GEDCOM node. If there is no matching event these
functions return null.

Father, mother, nextsib and prevsib return the father, mother, next younger sibling and next older
sibling of the person, respectively. If the person has more than one father (mother) the father
(mother) function returns the first one. These functions return null if there is no person in the role.

Sex returns the person’s sex as the string M if the person is male, F if the person is female, or U if the
sex of the person is not known. Male and female return true if the person is male or female,
respectively, or false if not.

Pn generates pronouns, useful when generating English text; the second parameter selects the type of
pronoun:

He/She
he/she
His/Her
his/her
him/her

> W N e o

Nspouses returns the number of spouses the person has in the database, and nfamilies returns the
number of families the person is a parent/spouse in; these two values are not necessarily the same.
Parents returns the first family that the person is a child in.

Title returns the value of the first 1 TITL line in the record. Key returns the key value of a person or
family; it there is a second parameter and it is non-null, the leading I or F will be stripped. Soundex
returns the Soundex code of the person.

Root and Inode return the root node of the person’s GEDCOM node tree. Note that an INDI value is
not a NODE value. If you want to process the nodes within a person node tree, you must first use the
root or inode function to get the root of the person node tree. Root and inode are synonyms.

Indi returns the person who's key is passed as an argument; if no person has the key indi returns null.

Firstindi, nextindi and previndi allow you to iterate through all persons in the database. Firstindi
returns the first person in the database in key order. Nextindi returns the next person after the
argument person in key order. Previndi returns the previous person before the argument person in key
order.

Spouses is an iterator that loops through each spouse a person has. The first argument is a person. The
second argument is a person variable that iterates through the first person’s spouses. The third
argument is a family variable that iterates through the families the person and each spouse are in.
The fourth argument is an integer variable that counts the iterations.

Families is an iterator that loops through the families a person was a spouse/parent in. The first
argument is a person. The second argument is a family variable that iterates through the families the
first person was a spouse/ parent in. The third argument iterates through the spouses from the families;
if there is no spouse in a particular family, the variable is set to null for that iteration. The fourth
argument is an integer variable that counts the iterations.

Forindi is an iterator that loops through every person in the database in ascending key order. Its first
parameter is a variable that iterates through the persons; its second parameter is an integer counter
variable that counts the persons starting at one.

LifeLines Reference Manual — 33

Family Functions

EVENT marriage(FAM) first marriage event of

INDI husband(FAM) first husband / father of

INDI wife(FAM) first wife/mother of

INT nchildren(FAM) number of children in

INDI firstchild(FAM) first child of

INDI lastchild(FAM) last child of

STRING key(FAM|INDI [,BOOL]) internal key of (works for persons also)
NODE fnode (FAM) root GEDCOM node of

NODE root (FAM) root GEDCOM node of

FAM fam(STRING) find family from key

FAM firstfam() first family in database in key order
FAM nextfam(FAM) next family in database in key order
FAM prevfam(FAM) previous family in database in key order
children (FAM, INDI V, INT V) { } loop through children of family
forfam (FAM V, INT V) { } loop through all families in database

These functions take a family as an argument and return information about it.

Marriage returns the first marriage event found in the family record, if any; it returns null if there is
no marriage event.

Husband returns the first husband/father of the family, if any; and wife returns the first
wife/mother of the family, if any. Each returns null if the requested person is not in the family.

Nchildren returns the number of children in the family.
Firstchild and lastchild return the first child and last child in a family, respectively.
Key was described in the section on person functions.

Root and fnode return the root node of a family GEDCOM node tree. Note that a FAM value is not a
NODE value. If you want to process the nodes within a family node tree, you must first use root or
fnode function to get the root of the family node tree. Root and friode are synonyms.

Fam returns the family who's key is passed as an argument; if no family has the key fam returns null.

Firstfam, nextfam and prevfam allow you to iterate through all families in the database. Firstfam
returns the first family in the database in key order. Nextfam returns the next family after the
argument family in key order. Prevfam returns the previous family before the argument family in key
order.

Children is an iterator that loops through the children in a family. Its first parameter is a family
expression; its second parameter is a variable that iterates through each child; its third parameter is
an integer counter variable that counts the children starting at one. These two variables may be used
within the loop body.

Forfam is an iterator that loops through every family in the database in ascending key order. Its first
parameter is a variable that iterates through the families; its second parameter is an integer counter
variable that counts the families starting at one.

LifeLines Reference Manual — 34

List Functions

VOID list(LIST V) declare a list

BOOL empty(LIST) check if list is empty

INT length(LIST) length of list

VOID enqueue(LIST, ANY) enqueue element on list

ANY dequeue(LIST) dequeue and return element from list
VOID requeue(LIST, ANY) requeue an element on list

VOID push(LIST, ANY) push element on list

ANY pop(LIST) pop and return element from list
VOID setel(LIST, INT, ANY) array element assignment

ANY getel (LIST, INT) array element selection

forlist (LIST, ANY V, INT V) { } loop through all elements of list

LifeLines provides general purpose lists that can be accessed as queues, stacks or arrays. A list must be
declared with the list function before it can be used.

A list can have any number of elements. Empty returns true if the list has no elements and false
otherwise. Length returns the length of the list. The only parameter to both is a list.

Engqueue, dequeue and requeue provide queue access to a list. Enqueue adds an element to the back of a
queue, dequeue removes and returns the element from the front of a queue, and requeue adds an element
to the front of a queue. The first parameter to all three is a list, and the second parameter to enqueue
and requeue is the value to be added to the queue and can be any value.

Push and pop provide stack access to a list. Push pushes an element on the stack, and pop removes
and returns the most recently pushed element from the stack. The first parameter to both is a list, and
the second parameter to push is the value to be pushed on the stack and can be of any type.

Setel and getel provide array access to a list. Setel sets a value of an array element, and getel

returns the value of an array element. The first parameter to both is a list; the second parameter to both
is an integer index into the array; and the third parameter to setel is the value to assign to the array
element and can be of any type. Array elements are indexed starting at one. Unassigned elements are
assumed to be null (0). Arrays automatically grow in size to accommodate the largest index value that
is used.

Forlist is an iterator that loops through the element in a list. Its first parameter is a LIST expression;
its second parameter is a variable that iterates through the list elements; and its third parameter is an
integer counter variable that counts the list elements starting at one.

Table Functions

VOID table(TABLE V) declare a table
VOID insert(TABLE, STRING, ANY) insert entry in table
ANY lookup(TABLE, STRING) lookup and return entry from table

These functions provide general purpose, keyed tables. A table must be declared with the table
function before it can be used.

Insert adds an object and its key to a table. Its first parameter is a table; the second parameter is the
object's key; and the third parameter is the object itself. The key must be a string and the object can be
any value. If there already is an object in the table with that key, the old object is replaced with the
new.

Lookup retrieves an object from a table. Its first parameter is a table, and the second parameter is the
object’s key. The function returns the object with that key from the table; if there is no such object, null
is returned.

GEDCOM Node Functions

LifeLines Reference Manual — 35

STRING xref (NODE)
STRING tag(NODE)
STRING value(NODE)
NODE parent (NODE)
NODE child(NODE)
NODE sibling(NODE)

cross reference index of
tag of

value of

parent node of

first child of

next sibling of

NODE savenode (NODE)

copy a node structure

fornodes (NODE, NODE V) { }

loop through child nodes

traverse (NODE, NODE V, INT V) { } loop through all descendent nodes

These functions provide access to the components of a GEDCOM node. All take a GEDCOM node as their
only parameter, and each returns a different value associated with the node.

Xref returns the cross reference index of the node, if any; tag returns the tag of the node; and value
returns the value of the node, if any. If there is no cross reference, xref returns null; if there is no value,
value returns null.

Parent returns the parent node of the node, if any; child returns the first child node of the node, if any;
and sibling returns the next sibling node of the node, if any. Whenever there is no such related node,
these functions return null. These three functions allow simple navigation through a GEDCOM node
tree.

Savenode makes a copy of the node, and the substructure of nodes below the node, that is passed to it.
Beware: the memory used to make the copy is never returned to the system.

Fornodes is an iterator that loops through the child nodes of a GEDCOM node. Its first argument is a
node expression, and its second parameter is a variable that iterates through each direct child node of
the first node.

Traverse is an iterator providing a general method for traversing GEDCOM trees. Its first parameter is
a node expression; its second parameter is a variable that iterates over every node under the first node

in a top down, left to right manner; and its third parameter is a variable that is set to the level of the

current node in the iteration.

Event and Date Functions

STRING date(EVENT)

STRING place(EVENT)
STRING year (EVENT)

STRING long(EVENT)

STRING short (EVENT)
EVENT gettoday()

date of, value of first DATE line

place of, value of first PLAC line

year or, 1st string of 3—4 digits in 1st DATE line
date and place, values of 1st DATE and PLAC lines
date and place of, abbreviated from

returns the “event” of the current date

VOID dayformat (INT) set day format for stddate calls

VOID monthformat (INT) set month format for stddate calls
VOID dateformat (INT) set date format for stddate calls
STRING stddate (EVENT) date of, in current format

These functions extract information about the dates and places of events.

Date returns the value of the first DATE line in an event, a node in a GEDCOM record tree. Date
finds the first DATE line one level deeper than the event node. Place returns the value of the first
PLAC line in an event. Year returns the first three or four digit number in the value of the first DATE
line in an event; this number is assumed to be the year of the event.

Long returns the verbatim values of the first DATE and PLAC lines in an event, catenated together
and separated by a comma. Short abbreviates information from the first DATE and PLAC lines,

LifeLines Reference Manual — 36

catenates the shortened information together with a comma separator and returns it. An abbreviated
date is its year; an abbreviated place is the last component in the value, further abbreviated if the
component has an entry in the place abbreviation table.

Gettoday creates an event that has today’s date in the DATE line.

The last four functions are used to format dates in a variety of ways. Dayformat, monthformat, and
dateformat select style options for formatting the day, month, and overall date structure; stddate
returns dates in the selected style. The day format codes passed to dayformat are:

0 | leave space before single digit days
1 | use leading 0 before single digit days
2 | no space or leading 0 before single digit days

The month format codes passed to monthformat are:

number with space before single digit months

number with leading zero before single digit months
number with no space or zero before single digit months
upper case abbreviation (eg, JAN, FEB)

capitalized abbreviation (eg, Jan, Feb)

upper case full word (eg, JANUARY, FEBRUARY)
capitalized full word (eg, January, February)

oUW NP O

The full date formats passed to stddate are:

0 | damoyr 6 modayr

1 | moda,yr 7 damoyr

2 | mo/da/yr 8 | yrmoda

3 | da/mo/yr 9 | yr/mo/da

4 | mo-da-yr 10 | yr-mo-da

5 | da-mo-yr 11 | yrmoda

Value Extraction Functions

VOID extractdate(NODE, INT V, INT V, INT V) extract a date
VOID extractnames(NODE, LIST V, INT V, INT V) extract a name
VOID extractplaces(NODE, LIST V, INT V) extract a place
VOID extracttokens(STRING, LIST V, INT V, STRING) extract tokens

Value extraction functions read the values of certain lines and return those values in extracted form.

Extractdate extracts date values from either an event node or DATE node. The first parameter must be
a node; if its tag is DATE, the date is extracted from the value of that node; if its tag is not DATE, the
date is extracted from the first DATE line one level below the argument node. The remaining three
arguments are variables. The first is assigned the integer value of the extracted day; the second is
assigned the integer value of the extracted month; and the third is assigned the integer value of the
extracted year.

Extractnames extracts name components from a NAME line. Its first argument is either an INDI or a
NAME node. If it is a NAME line, the components are extracted from the value of that node; if it is an
INDI line, the components are extracted from the value of the first NAME line in the person record.
The second argument is a list that will hold the extracted components. The third argument is an integer
variable that is set to the number of extracted components. The fourth argument is a variable that is set
to the index (starting at one) of the surname component; the / characters are removed from around the
surname component. If there is no surname this argument variable is set to zero.

Extractplaces extracts place components from a PLAC node. The first argument is a node; if its tag is
PLAC, the places are extracted from the value of the node; if its tag is not PLAC, places are extracted

LifeLines Reference Manual — 37

from the first PLAC line one level below the argument node. The second parameter is a list that will
hold the extracted components. The third argument is an integer variable that is set to the number of
extracted components. Place components are defined by the comma-separated portions of the PLAC
value; leading and trailing white space is removed from the components, while all internal white
space is retained.

Extracttokens extracts tokens from a string and places them in a list. The first argument is the string to
extract tokens from. The second argument is the list to hold the tokens. The third argument is an integer
variable that is set to the number of tokens extracted. The fourth parameter is the string of deliminater
characters that extracttokens uses to break the input string into tokens.

User Interaction Functions

VOID getindi(INDI V [,STRING])
VOID getindiset(SET V [,STRING])
VOID getfam(FAM V)

VOID getint(INT V [,STRING])
VOID getstr(STRING V [,STRING])

identify person through user interface
identify set of persons through user interface
identify family through user interface

get integer through user interface

get string through user interface

INDI choosechild(INDI |FAM)
FAM choosefam(INDI)

INDI chooseindi (SET)

INDI choosespouse(INDI)
SET choosesubset (SET)

select child of person/family thru user interface
select family person is in as spouse

select person from set of persons

select spouse of person

select a subset of persons from set of persons

INT menuchoose(LIST [,STRING])

select from a list of options

These functions interact with the user to get information needed by the program.

Getindi asks the user to identify a person. The first argument is a variable that is set to the person.
The second is an optional string to use as a prompt. Getindiset asks the user to identify a set of persons.
Getfam asks the user identify a family. Getint and getstr ask the user enter an integer and string,
respectively.

Choosechild asks the user select a child of a family or person; its single argument is a person or family;
it return the child. Choosefam has the user select a family that a person is in as a spouse; its argument
is a person; it returns the family. Chooseindi has the user select one person from a set of persons; its
argument in a set of persons; it returns the chosen person. Choosespouse has the user select a spouse of a
person; its argument is a person; it returns the chosen spouse. Choosesubset has the user select a subset of
persons from a set of persons; its argument is the chosen subset.

Menuchoose allows the user to select from an arbitrary menu. The first argument is a list of strings
making up the items in the menu; the second, optional argument is a prompt string for the menu;
menuchoose returns the integer index of the item selected by the user; if the user doesn’t select an item,
zero is return.

String Functions

LifeLines Reference Manual — 38

STRING lower (STRING)

STRING upper (STRING)

STRING capitalize(STRING)
STRING trim(STRING, INT)
STRING rjustify(STRING, INT)

convert to lower case
convert to upper case
capitalize first letter
trim to length

right justify in field

STRING save(STRING)

STRING strsave(STRING)

STRING concat(STRING [,STRING]+)
STRING strconcat (STRING [,STRING]+)
INT strlen(STRING)

save and return copy of string
same as save function
catenate two strings

catenate two strings

number of characters in string

STRING substring(STRING, INT, INT)
INT index(STRING, STRING, INT)

substring function
index function

STRING d(INT)
STRING card(INT)
STRING ord(INT)
STRING alpha (INT)
STRING roman (INT)

number as decimal string

number in cardinal form (one, two, ...)
number in ordinal form (first, second, ...)
convert number to Latin letter (g, b, ...)
number in Roman numeral form (i, i, ...)

STRING strsoundex(STRING)

find SOUNDEX value of arbitrary string

INT strtoint(STRING)
INT atoi(STRING

convert numeric string to integer
convert numeric string to integer

INT strcmp(STRING, STRING)
BOOL egstr(STRING, STRING)
BOOL nestr(STRING, STRING)

general string compare
compare strings for equality
compare strings for inequality

These functions provide string handling. Many of them use an approach to memory management chosen
to minimize memory use. A function using this approach constructs its output string in its own string
buffer, reusing that buffer each time it is called. When a function using this approach returns a string
value it returns its buffer. In consequence the strings returned by these functions must be either used or
saved before the function is called again.

Lower and upper convert the letters in their arguments to lower or upper case, respectively.
Capitalize converts the first character of the argument, if it is a letter, to upper case. Lower and
upper use the buffer return method; capitalize operates on and returns it argument.

Trim shortens a string to the length specified by the second parameter. If the string is already of that
length or shorter the string is not changed. Rjustify right justifies a string into another string of the
length specified by the second parameter. If the original string is shorter than the justified string,
blanks are inserted to the left of the original string; if the string is longer than the justified string, the
original string is truncated on the right. Trim uses the buffer return method; rjustify creates and returns
a new string.

Save creates a copy of the argument string and returns it. This function is required because built-in
functions that return strings use the buffer return method; if a string is to be used repeatedly or long after
it is returned from a function, it should first be saved by using the save function. Strsave is the same
function as save.

Concat and strconcat catenate strings and return the result. They are identical functions. They may
take two to 32 string arguments; null arguments are allowed. The arguments are catenated together into
a single, newly allocated string, which is returned.

Strlen returns the length of the string argument.

Substring returns a substring of the first argument string. The second and third arguments are the
indices of the first and last characters in the argument string to use to form the substring. The indexes

LifeLines Reference Manual — 39

are relative one. Substring uses the buffer return method.

Index returns the character index of the nth occurrence of a substring within a string. The index is the
relative one character offset to the beginning of the substring. The first argument is the string; the
second argument is the substring; and the third argument is the occurrence number.

D, card, ord, alpha and roman convert integers to strings. D converts an integer to a numeric string;
card converts an integer to a cardinal number string (eg, one, two, three); ord converts an integer to
an ordinal number (eg, first, second, third); alpha converts an integer to a letter (eg, 4, b, ¢); and
roman converts an integer to a Roman numeral (eg, i, ii, iii).

Strsoundex converts an arbitrary string to a SOUNDEX value. Non-ASCII text characters are ignored
in the string.

Strtoint converts a numeric string to an integer. Atoi is identical to strtoint.

Strcmp compares two strings and returns an integer that is less than zero, equal to zero, or greater than
zero, if, respectively, the first string is lexicographically less than, equal to, or greater than the second
string. Egstr and nestr return whether two strings are equal or not equal, respectively.

Output Mode Functions

VOID linemode() use line output mode

VOID pagemode(INT, INT) use page output mode with given page size
VOID col(INT) position to column in output

VOID row(INT) position to row in output

VOID pos(INT, INT) position to (row, col) coordinate in output
VOID pageout() output page buffer

STRING nl() newline character

STRING sp() space character

STRING gt () double quote character

VOID newfile(STRING, BOOL) send program output to this file

STRING outfile() return name of current program output file
VOID copyfile(STRING) copy file contents to program output file
VOID print(STRING [,STRING]*) print string to standard output window

Reports can be generated in two modes, line mode and page mode. Linemode selects line mode and
pagemode selects page mode; line mode is the default. The first parameter to pagemode is the number
of rows per page; the second parameter is the number of columns per page. When in the line mode report
output is written directly to the output file as the program runs, line by line. When in page mode output
is buffered into pages which are written to the output file when pageout is called. Page mode is useful
for generating charts (eg, pedigree charts or box charts) where it is convenient to compute the two-
dimensional location of output.

Col positions output to the given column. If the current column is greater than the argument, col
positions output to the given column on the next line. Col works in both modes.

Row positions output to the first character in the given row; row can only be used in page mode.

Pos positions output to a specified row and column coordinate; the first argument specifies the row, and
the second specifies the column. Pos can only be used in page mode.

NI write a new line character to the output file; sp writes a space character to the output file; and gt
writes a quote character to the output file. Note that \n and \” can be used within string values to
represent the newline and double quote characters.

Neuwfile specifies the name of the report output file. Its first argument is the file’s name; its second
argument is an append flag — if its value is non-zero the report appends to this file; if its value is zero
the report overwrites the contents of the file. Newfile can be called many times; this allows a single

LifeLines Reference Manual — 40

report program to generate many report output files during one execution. Programs are not required to
use newfile; if it is not used then LifeLines automatically asks for the name of the report output file.

Outfile returns the name of the current report output file.

Copyfile copies the contents of a file to the report output file; its argument is a string whose value is

the name of a file; if the file name is not absolute nor relative, then the LLPROGRAMS environment
variable, if set, will be used to search for the file; the file is opened and its contents copied to the report
output file.

Print prints its argument string to the standard output window; print may have one to 32 arguments.

Person Set Functions and GEDCOM Extraction

VOID indiset(SET V) declare a set variable

SET addtoset(SET, INDI, ANY) add a person to a set

SET deletefromset (SET, INDI, BOOL) remove a person from a set

INT lengthset (SET) size of a set

SET union(SET, SET) union of two sets

SET intersect(SET, SET) intersection of two sets

SET difference(SET, SET) difference of two sets

SET parentset (SET) set of all parents

SET childset(SET) set of all children

SET spouseset (SET) set of all spouses

SET siblingset (SET) set of all siblings

SET ancestorset (SET) set of all ancestors

SET descendentset (SET) set of all descendents

SET descendantset (SET) same as descendentset; spelling

SET uniqueset (SET) remove duplicates from set

VOID namesort (SET) sort indiset by name

VOID keysort (SET) sort indiset by key values

VOID valuesort(SET) sort indiset by auxiliary values

VOID genindiset(STRING, SET) generate indiset from GEDCOM name string
VOID gengedcom(SET) generate GEDCOM file from person set
forindiset(SET, INDI V, ANY V, INT V) { } loop through all persons in person set

These functions allow you to manipulate person sets. A person set is a potentially large set of persons;
each person may have an arbitrary value associated with him/her. A person set must be declared with
the indiset function before it can be used.

Addtoset adds a person to a set. The first argument is the set; the second argument is the person; and
the third argument may be any value. The same person may be added to a set more than once, each time
with a different value. Deletefromset removes a person from a set. The first argument is the set; the
second argument is the person; if the third parameter is true all of the person’s entries are removed
from the set; if false only the first entry is removed. Lengthset returns the number of persons in a

person set.

Union, intersect and difference return the set union, set intersection and set difference, respectively,
of two person sets. Each functions takes two person sets as arguments and returns a third person set. The
functions do not affect the values of their two argument sets.

Parentset, childset, spouseset and siblingset return the set of all parents, set of all children, set of
all spouses and set of all siblings, respectively, of the set of persons in their argument. In all cases there
is no change to the argument person set.

Ancestorset returns the set all ancestors of all persons in the argument set. Descendentset returns the
set of all descendents of all persons in the argument set. Descendantset is the same as descendentset; it

LifeLines Reference Manual — 41

allows an alternate spelling.

Uniqueset sorts a person set by key value and then removes all entries with duplicate keys; the input
set is modified and returned.

Namesort, keysort and valuesort sort a set of persons by name, by key and by associated value,
respectively.

Each person in a person set has an associated value. When a person is added to a set with addtoset, the
value is explicitly assigned. When new sets are created by other functions, a number of rules are used to
associate values with persons as they are added to the new sets. For parentset, childset and

spouseset the values are copied from the first input set person that causes the new person to be added
to the set. For union, intersect and difference, the values are copied from the values in the first input
set, except in the case of union, when persons are taken from the second set alone, in which case the
values come from there. For ancestorset and descendantset the value is set to the number of generations
the new person is away from the first person in the input set that the new person is related to. If the
new person is related to more than one person in the input set, the value is set for the nearest
relationship; that is, the value is as low as possible. Valuesort sorts a person set by the values of these
auxiliary values.

Genindiset generates the set of persons that matche a string whose value is a name in GEDCOM
format. Genindiset uses the same algorithm that matches names entered at the browse prompt or by
the user interaction getindiset function.

Gengedcom generates GEDCOM format output, to the report output file, of all persons in the argument
person set. The output contains a person record for each person in the set, and all the family records that
link at least two of the persons in the set together.

Forindiset is an iterator that loops through each person in an indiset. The first parameter is an indiset.
The second parameter is a variable that iterates through each person in the set. The third parameter
iterates through the values associated with the persons. The fourth parameter is an integer variable
that counts the iterations.

Record Update Functions

NODE createnode(STRING, STRING) create a GEDCOM node
VOID addnode(NODE, NODE, NODE) add a node to a GEDCOM tree
VOID deletenode(NODE) delete a node from a GEDCOM tree

These functions allow you to modify an internal GEDCOM node tree.

Createnode creates a GEDCOM node; the two arguments are tag and value strings, respectively; the
value string can be null. Addnode adds a node to a node tree. The first argument is the new node; the
second is the node in the tree that becomes the parent of the new node; the third is the node in the tree
that becomes the previous sibling of the new node; this argument is null if the new node is to become
the first child of the parent. Deletenode removes a node from a node tree.

These functions change the internal form of a node tree; they do not modify original records in the
database. These functions may be changed or extended in the future to allow database changes. Note:
deletenode has a memory leak.

LifeLines Reference Manual — 42

Record Linking Functions

BOOLEAN reference(STRING) determine if string is a cross reference
NODE dereference(STRING) reference cross reference or key to node tree
NODE getrecord (STRING) same as dereference

These functions allow you to recognize values that are cross references and to read the records they refer
to. Reference returns true if its string argument is a cross reference value, that is, the internal key of

one of the records in the database. Dereference returns the node tree of the record referred to by its cross
reference string argument. Getrecord is a synonym for dereference.

Miscellaneous Functions

VOID lock(INDI|FAM) lock a person or family in memory

VOID unlock(INDI |FAM) unlock a person or family from memory
STRING database() return name of current database

STRING version() return version of LifeLines program
VOID system(STRING) execute string as a UNIX shell command

Lock and unlock are used to lock a person or family into RAM memory, and to unlock a person or family
from RAM memory, respectively.

Database returns the name of the current database, useful in titling reports. Version returns the
version of the running LifeLines program, eg, 3.0.2.

System executes its string argument as a UNIX shell command by calling the UNIX system system
call.

