The DeadEnds Data Model

Version 2.0, 23 November 2010
Thomas T. Wetmore IV

Introduction

This document describes the model used by DeadEnds, a set of genealogy software
programs. The model defines a set of object classes that represent genealogical entities.
DeadEnds objects are hierarchical trees built from nodes of text-based information. Each
node has a tag to identify its type, and content that holds its value. The content can be a text
string or it can be a list of nodes one level deeper the tree. DeadEnds records are objects
with unique identifiers that allow them to be referred to by other objects. The root tag of a
record indicates its type. There are xxx record types in the model, and they are defined
below.

The model is not abstract. Objects are stored in databases and written to files based on the
model. There are different ways to represent text-based trees. The most general method in
use today is XML. The most common used by genealogy programs is Gedcom. The
specifications below use a notation simpler than XML and Gedcom. The notation is used for
database records and external “native” DeadEnds files. DataEnds can export data in Gedcom
and XML format.

In the specifications below each node is structured by:
node : tag : content
tag :: IDENTIFIER

These are rules. The term on the left of the double colon is defined by the expression on the
right. The first rules states that a node is a tag followed by a colon followed by content. The
second rule states that a tag is an IDENTIFER. The content can either be a quoted Unicode
string or a list of lower level nodes, so there are two content rules:

content :: STRING ; | [node*]

The node* notation means any number of nodes. The semicolon and square brackets are
literals. The vertical bar separates the two right side rules. A STRING is a quoted Unicode
string.

An example text-based tree built from these rules is:
person : [id: abcd234fed5; content: [name: “Thomas Trask /Wetmore/ IV”; sex: M]]
This could be expressed in XML as:

<person id=" abcd234fed5”>
<name>Thomas Trask /Wetmore/ IV</name>
<sex>M</sex>

</person>

It could be expressed in Gedcom as:

0 @ abcd234fed5@ INDI

1 NAME Thomas Trask /Wetmore/ IV
1 SEXM

Top Level Rule
The top level rule defines a sequence of record:

deadEnds :: (sourceRecord | eventRecord | personRecord | placeRecord | noteRecord |
groupRecord | entityRecord | urlRecord | ...)*

Source Records

Source records represent sources of genealogical evidence. Sources can be arranged in
hierarchies.

sourceRecord :: source : [id sourceContent]

All records have this structure, a root node with tag specifying the type and a value consisting of
an id node and the rest of the content.

id :: id : UUID ;

Every record and record reference has an id attribute whose value is a UUID, a universally
unique identifier.

sourceContent :: sourceType sourceAttr* urlRef* note* noteRef* sourceRef?

Source content starts with a type attribute followed by source attributes. It may also contain URL
references, notes, note references, and an optional source reference to refer to the source that
contains this source.

sourceType :: type : (book | register | ... | userDefSourceType) ;
The source type gives the type of the source.
sourceAttr :: attribute

These are attributes of the source. Example attribute tags include title, author, page, and
volume.

References to source records are found in records that refer to source records:
sourceRef :: sourcep : [id sourceRefAttr*]
sourceRefAttr :: attribute

These are attributes of the source referred to.

Event Records

Event records represent events in the lives of persons. Events involve persons as role
players. They may serve to establish or changes relationships between persons. Event
records may represent events extracted directly from evidence, or they may represent
hypotheses or conclusions on the part of the researcher.

eventRecord :: event : [id eventContent |

eventContent :: eventType date? placeRef? personRoleRef* eventAttr* eventRef* urlRef*
note* noteRef* sourceRef?

Date and place reference are optional. Person role references refer to the event’s role players.
Event attributes hold other attributes of the event. Event references refer to other events this
event may refer to as evidence. Using event references allows event records to be structured into
trees of event records. These trees allow the full research process to be reflected in the database.

eventType :: type : (birth | death | marriage | baptism | burial | residence |
immigration | naturalization | ... | userDefEventType) ;

There is a long list of available event types; the user can invent new types.
personRoleRef :: rolep: [id personRole personRoleRefAttr* |

Events refer to persons by person role references. Each contains the id of a person record, the
role the person plays, and any attributes needed to clarify the role.

personRole :: role : personRoleType ;

personRoleType :: (father | mother | parent | child | husband | wife | spouse |
brother | sister | sibling | uncle | aunt | cousin | ... | userDefPersonRoleType

)

There is a long list of available person roles; the user can invent new roles.
personRoleRefAttr :: attribute
eventAttr :: attribute
eventRef :: eventp : [id eventRefAttr*]

Event references refer to other events that provide the evidence behind this event. Event records
can therefore be structured into event trees using these references to represent growing
hypotheses and conclusions about the events in the lives of persons in the database.

eventRefAttr :: attribute

Person Records

Person records hold information about people. Records may represent information
extracted directly from evidence or records may represent a researcher’s hypotheses and
conclusions about a real person.

personRecord :: person : [id personContent]

personContent :: personName? sex personAttr* eventRoleRef? vital* relationRef*
personRef* urlRef* note* noteRef* sourceRef*

The person’s name is optional and has its own substructure. Event role references refer to events
the person plays roles in. Vital substructures hold information about events the person is the
primary role player in. Relation references refer to persons the person is related to. Person
references refer to other persons this person refers to as evidence.

personName :: name : [nameContent |
Name content defines the substructure of person names.
sex::sex: (M| F|U);

personAttr :: attribute

eventRoleRef :: rolep : [id eventRole eventRoleRefAttr*]

Persons refer to events by event role references. Each contains the id of an event record, the role
the person plays in the event, and any attributes needed to clarify the role. Evidence persons
refer to evidence events (and vice versa).

eventRole :: role : eventRoleType ;
eventRoleType :: (birth | death | burial | ... | userDefEventRole)
vital :: vital : [type : vitalType ; vitalContent |

A vital structure is event information placed in a person record rather than in a separate event
record. This is useful in cases where the event has a primary role player, and the evidence only
provides information about that person. The vital structure is placed in that person’s record.

vitalType :: (birth | death | baptism | burial | ... | userDefVitalType)
vitalContent :: date? placeRef? eventAttr* urlRef* note* noteRef*

Vital content is simpler than event content. It does not contain person role references or its own
source reference since its source is the same as the containing person.

relationRef :: relationp: [id relationRole ; relationRefAttr*]

A relation reference refers directly to another person. Its role indicates the relationship this
person has with respect to the other person. The other person may have a reciprocal relation
back to this person. The reference establishes a relationship between the persons. The approach
is useful if evidence establishes the relationship but gives no further information.

relationRole :: personRole
relationRefAttr:: attribute
personRef :: personp : [id personRefAttr* |

Person references refer to other persons that provide the evidence behind this person. Person
records can therefore be structured into person trees using these references to represent
growing hypotheses and conclusions about the person in the database.

personRefAttr :: attribute

Place Records

Place records represent locations where events have happened. Place records may be
constructed into hierarchies. For example city place records may refer to the county they
are in, which may refer to the state or province they are in and so forth.

placeRecord : place : [id placeContent]
placeContent :: placeType placeName placeAbbrev placeAttr* placeRef?

placeType :: type : (village | town | city | county | state | province | region |
country | ... | userDefPlaceType) ;

placeName :: name : STRING ;
placeAbbrev :: abbrv : STRING ;
placeAttr :: attribute

placeRef :: placep : [id placeRefAttr*]

Place references refer to the record of the place that contains this place. This allows place
records to be constructed into large trees that represent sets of hierarchical places. The place
model does not have provision for historical changes in locations. Third parties could provide
sets of related place records.

placeRefAttr :: attribute

Note Records and Note Structures

General notes can be placed in separate records if many other records will refer to it.
Otherwise notes can be included as node sub-trees within the records they apply to.

noteRecord :: note : [id noteContent]
noteContent :: note : STRING ;

The model will be enhanced to allow styled text for notes.
noteRef :: notep : [id noteRefAttr*]

There are both note records and note structures that can be components of other records.
Records are better if numerous records will refer to the same not. Internal components are
available for notes that pertain to only one record.

note :: note : [noteAttr*]

Group Records

Group records represent an association of persons. The main use of this record is to form
family records.

groupRecord :: group : [id groupContent]

groupContent :: groupType date? placeRef? personRoleRef* groupAttr* urlRef* note*
noteRef* sourceRef?

groupType :: type : (family | ... | userDefGroupType) ;

groupAttr :: attribute

Entity Records

Entity records represent institutions and other entities of interest in genealogical research.
Examples of such entities include courts, cemeteries, hospitals, churches, colleges, banks,
institutes, corporations and so on.

entityRecord :: entity : [id entityContent]
entityContent :: entityType entityAttr* urlRef* note* noteRef* sourceRef?

entityType :: type : (court | cemetery | hospital | church | college | university |
institution | association | corporation | ... | userDefEntityType) ;

entityAttr :: attribute

URL Records

URL records refer to information external to databases, often files on the local file system.
Other records can refer to these URL records.

urlRecord :: url : [id urlContent]

urlContent :: urlName urlType urlAttr* sourceRef?
urlName :: name : STRING ;

urlType :: type : (file | ... | userDefUrlType) ;
urlAttr :: attribute

URL references are used in records to refer to URL records that point to information about
the record.

urlRef :: urlp : [id urlRefAttr*]
urlRefAttr :: attribute

Attributes

Attributes are used throughout the rules. Most rules in fact are special purpose attributes.
In addition the user is free to add attributes. The rules indicate where these attributes can
appear. For example in the personContent rule the personAttr* component indicates where
person attributes can appear. The personAttr rule is:

personAttr :: attribute

The variety of specific attribute rules are used to indicate that there are pre-established lists
of attributes that are appropriate in each context, though the user may add attributes with
other tags. The attribute rule itself was not defined above, though the general discussion of
nodes hinted at what it would be. Here is the rule defining attributes:

attribute :: tag : content
tag :: IDENTIFIER
content :: (STRING ; | [attribute*])

An IDENTIFER is a sequence of Unicode characters making up a conventional identifier, and
a STRING is a quoted string of Unicode characters.

Person Names and Dates

Person names and dates are both represented by node trees with specific structuring rules.
Neither are defined in this document yet.

